AC signals can emanate from many sources, and many of these sources are incompatible with the most popular interface voltages, such as TTL. A temptation always exists to capacitively couple the ac signals because capacitive coupling strips off the dc level. Capacitive coupling sometimes doesn't work, because the coupled signal's voltage swings around ground, so you have to add dc offset to make the coupled signal compatible with the interface voltage. Also, the coupled signal contains a dc content, VDC, which varies with pulse width, and the dc variation interferes with the interface voltage when the signal swing is large. This circuit completes the signal interface by measuring the dc offset, adding appropriate compensation to the capacitively coupled signal and adding an adjustable-dc- level feature (Figure 1).

R1and C2 form a lowpass filter (f3dB=0.312 Hz) that measures the dc content of the input signal. The transfer equation is the following:

When R1+R2=R3 and RF=RG, VDC transfers to the output signal, VA, because it is multiplied by 1/2(2)=1 or a gain of one. The output voltage for the same resistor values contains VREF; thus, the output signal is level-shifted by the voltage, VREF, not VREF plus the VDC. When the input signal's duty cycle changes, rather than the output voltage's changing with duty cycle, the op amp keeps the output-voltage level constant. The gain for the VDC must be one, so that it cancels the voltage shift after ac-coupling. The gain for the reference voltage can be greater than one; for example if R1+R2=3R3 and RF=3RG, the dc content is 1/4(4)=1, and the reference-voltage gain is 3/4(4)=3. VREF can be positive or negative, so you can obtain TTL, CMOS, or ECL logic levels with this circuit. The time constant formed by C1 and R4 must be large enough to pass the lowest frequency signal without distortion. The value of R4 is not critical, as long as the op amp can drive R4 without losing too much signal swing. In some cases, you can size R4 to present the driving-point impedance you need to eliminate near-end reflections. The circuit easily couples 400-MHz data as configured, but the data rate depends on the time constant formed by R4 and the input impedance of the driven circuit.

最新文章

  1. 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
  2. oracle11g dataguard 完全手册
  3. iOS开发-UINavigationBar透明设置
  4. Sentinel-Redis高可用方案(二):主从切换
  5. 全键盘Vimium快捷键学习记录
  6. 当kfreebsd 用户遇见openSUSE系统
  7. Redis系列-存储篇hash主要操作函数小结
  8. 8天学通MongoDB——第三天 细说高级操作
  9. *J2EE中乱码处理
  10. log_slave_updates在线修改
  11. MSTest不支持参数化测试的解决方案
  12. Java对象序列化入门
  13. pydev新工程
  14. twitter 授权过程
  15. Java基础一:面向对象的特征
  16. python random从集合中随机选择元素
  17. java编译过程(字节码编译和即时编译)
  18. 安装linux14.04
  19. 2018-2019-2 《网络对抗技术》Exp4 恶意代码分析 20165326
  20. 解决Window安全中心对Kitematic-0.17.3-Ubuntu.zip提示病毒,但无法删除的问题。

热门文章

  1. 模板为webpack的目录结构
  2. Python 库汇总中文版
  3. Django 1.10文档中文版Part4
  4. Linux文件访问流程及磁盘inode和block总结
  5. SpringBoot微服务
  6. 【PAT】1001. 害死人不偿命的(3n+1)猜想 (15)
  7. OOD沉思录 --- 面向动作与面向对象 --- 避免泛滥成灾的类
  8. 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]
  9. CF986B Petr and Permutations [逆序对]
  10. CodeVS1380 没有上司的舞会 [树形DP]