主要内容:

一.K-means算法简介

二.算法过程

三.随机初始化

四.二分K-means

四.K的选择

一.K-means算法简介

1.K-means算法是一种无监督学习算法。所谓无监督式学习,就是输入样本中只有x,没有y,即只有特征,而没有标签,通过这些特征对数据进行整合等操作。而更细化一点地说,K-means算法属于聚类算法。所谓聚类算法,就是根据特征上的相似性,把数据聚集在一起,或者说分成几类。

2.K-means算法作为聚类算法的一种,其工作自然也是“将数据分成几类”,其基本思路是:

1) 首先选择好将数据分成k类,然后随机初始化k个点作为中心点。

2) 对于每一个数据点,选取与之距离最近的中心点作为自己的类别。

3) 当所有数据点都归类完毕后,调整中心点:把中心点重新设置为该类别中所有数据点的中心位置,每一轴都设置为平均值。(所以称为means)

4) 重复以上2)~3)步骤直至数据点的类别不再发生变化。

3.K-means算法从感性上去理解,就是把一堆靠得近的点归到同一个类别中。

二.算法过程

1.一些变量的约定:μ(i)表示第i个中心点,c(i)表示第i个数据点归到哪个中心点。

2.K-means算法的本质就是:移动中心点,使其渐渐地靠近数据的“中心”,即最小化数据点与中心点的距离。即:

3.算法流程:

4.Python代码如下:

 # coding:utf-8

 from numpy import *

 def distEclud(vecA, vecB):      #计算欧式距离
return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB) def randCent(dataSet, k): # 初始化k个随机簇心
n = shape(dataSet)[1] #特征个数
centroids = mat(zeros((k, n))) # 簇心矩阵k*n
for j in range(n): #特征逐个逐个地分配给这k个簇心。每个特征的取值需要设置在数据集的范围内
minJ = min(dataSet[:, j]) #数据集中该特征的最小值
rangeJ = float(max(dataSet[:, j]) - minJ) #数据集中该特征的跨度
centroids[:, j] = mat(minJ + rangeJ * random.rand(k, 1)) #为k个簇心分配第j个特征,范围需限定在数据集内。
return centroids #返回k个簇心 def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] #数据个数
clusterAssment = mat(zeros((m, 2))) # 记录每个数据点被分配到的簇,以及到簇心的距离
centroids = createCent(dataSet, k) # 初始化k个随机簇心
clusterChanged = True # 记录一轮中是否有数据点的归属出现变化,如果没有则算法结束
while clusterChanged:
clusterChanged = False
for i in range(m): # 枚举每个数据点,重新分配其簇归属
minDist = inf; minIndex = -1 #记录最近簇心及其距离
for j in range(k): #枚举每个簇心
distJI = distMeas(centroids[j, :], dataSet[i, :]) #计算数据点与簇心的距离
if distJI < minDist: #更新最近簇心
minDist = distJI; minIndex = j
if clusterAssment[i, 0] != minIndex: clusterChanged = True #更新“变化”记录
clusterAssment[i, :] = minIndex, minDist ** 2 #更新数据点的簇归属
print centroids
for cent in range(k): #枚举每个簇心,更新其位置
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]] # 得到该簇所有的数据点
centroids[cent, :] = mean(ptsInClust, axis=0) # 将数据点的均值作为簇心的位置
return centroids, clusterAssment # 返回簇心及每个数据点的簇归属

三.随机初始化

由于初始化的中心点对于最后的分类结果影响很大,因而很容易出现:当初始化的中心点不同时,其结果可能千差万别:

因此,为了分类结果更加合理,我们可以多次初始化中心点,即多次运行K-means算法,然后取其中J(c1,c2……,μ1,μ2……)最小的分类结果。

四.二分K-means

1.为了克服K-means算法收敛域局部最小值的问题(缘因对初始簇心的位置敏感),二分k-means出现了。该算法首先将所有点归于一个簇,然后将其一分为二。之后选择其中一个簇继续一分为二。选择的依据就是:该簇的划分是否可以最大程度降低SSE(误差平方和)的值。上述基于SSE的划分过程不断重复,直至簇数达到k为止。

2.伪代码如下:

3.Python代码如下:

 '''二分K均值'''
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
centroid0 = mean(dataSet, axis=0).tolist()[0] #创建初始簇心,标号为0
centList = [centroid0] # 创建簇心列表
clusterAssment = mat(zeros((m, 2))) #初始化所有数据点的簇归属(为0)
for j in range(m): # 计算所有数据点与簇心0的距离
clusterAssment[j, 1] = distMeas(mat(centroid0), dataSet[j, :]) ** 2
''''''''''''
while (len(centList) < k): #分裂k-1次,形成k个簇
lowestSSE = inf #初始化最小sse为无限大
for i in range(len(centList)): #枚举已有的簇,尝试将其一分为二
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0],:] #将该簇的数据点提取出来
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) #利用普通k均值将其一分为二
sseSplit = sum(splitClustAss[:, 1]) # 计算划分后该簇的SSE
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) #计算该簇之外的数据点的SSE
print "sseSplit, and notSplit: ", sseSplit, sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE: #更新最小总SSE下的划分簇及相关信息
bestCentToSplit = i #被划分的簇
bestNewCents = centroidMat #划分后的两个簇心
bestClustAss = splitClustAss.copy() #划分后簇内数据点的归属及到新簇心的距离
lowestSSE = sseSplit + sseNotSplit #更新最小总SSE
''''''''''''
print 'the bestCentToSplit is: ', bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0] # 一个新簇心的标号为旧簇心的标号,所以将其取代就簇心的位置
centList.append(bestNewCents[1, :].tolist()[0]) # 另一个新簇心加入到簇心列表的尾部,标号重新起
bestClustAss[nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList) #更新旧簇内数据点的标号
bestClustAss[nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit #同上
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0],:] = bestClustAss # 将更新的簇归属统计到总数据上
return mat(centList), clusterAssment

四.K的选择

最后一个问题:既然是K-means,那么这个k应该取多大呢?

一.Elbow method:

假设随着k的增大,cost function j的大小呈现以下的形状:

可以看到,当k=3时,J已经很小了,且再增大k也不能大大地减小J。说明此时k选取3比较合适。

但是,这种“手肘”情况并不常见,更一般的情况是:

此时根本看不出哪里才是“手肘”,所以对此的策略是:实践调研,按实际需求的而定。

最新文章

  1. Leetcode Power of Two
  2. T-SQL 比较N个指段取其中最大值
  3. python+selenium简易自动化框架,包含生成测试报告以及发送结果至Email
  4. Android应用主题与横竖屏的切换
  5. RabbitMQ学习总结 第五篇:路由Routing
  6. leetcode022. Generate Parentheses
  7. 如何关闭dell inspiron n4010的内置麦克
  8. 手把手教学:详解HTML5移动开发框架PhoneJS
  9. Codeforces Round #257 (Div. 2) 题解
  10. Dom7.js 源码阅读备份
  11. C++ traits技术浅谈
  12. c++ 类的默认八种函数
  13. Bootstrap中data-src无法显示图片,但是src可以
  14. 一篇迟到的gulp文章
  15. jquery遍历table为每一个单元格取值及赋值
  16. 本机Jenkins的使用
  17. WebSocke实时通讯协议
  18. Oracle命令行中显示:ORA-04076: 无效的 NEW 或 OLD 说明
  19. Windows 后台执行jar
  20. WPF touch Scroll -触摸滚动

热门文章

  1. 清空catalina.out报错Permission denied
  2. shell脚本中数组array常用技巧学习实践
  3. 第1章 为什么创造WPF、第2章 XAML揭秘
  4. spring boot 读取配置文件(application.yml)中的属性值
  5. sql server 数据库系统整理——数据表的创建和管理
  6. CocoaPods Podfile详解与使用
  7. grep命令:查看配置文件未注释行(转)
  8. OpenCV 中的三大数据类型( 概述 )
  9. Angular1.0路由的Hashbang和HTML5模式
  10. Windows上搭建Kafka