一、已知下列递推式:

\[C(n)=
\begin{cases}
1 & , & n = 1 \\
2C(n/2) + n - 1& , & n \geq 2
\end{cases}
\]

请由定理1 导出C(n)的非递归表达式并指出其渐进复杂性.

定理1:设\(a,c\)为非负整数,\(b,d,x\)为非负常数,并对于某个非负整数\(k\), 令\(n=c^k\), 则以下递推式

\[f(n)=
\begin{cases}
d & , & n=1 \\
af(n/c)+bn^x& , & n\geq2
\end{cases}
\]

的解是

\[f(n)=
\begin{cases}
bn^xlog_cn + dn^x & , & n=1 \\
\left( d + \frac{bc^x}{a-c^x} \right)n^{log_ca} - \left( \frac{bc^x}{a-c^x}\right)n^x& , & n\geq2
\end{cases}
\]

令 \(T(n) = C(n) - 1\),则

\[T(n)=
\begin{cases}
0 & , & n = 1 \\
2T(n/2) + n & , & n \geq 2
\end{cases}
\]

则\(T(n)\)满足定理1中递推式,且\(a = 2, b = 1, c = 2, d = 0, x = 1\), 即有\(2 = 2^1\)

故当\(n = 2^k\)时,\(T(n)\)的解为

\[T(n) = nlog_2n
\]

则\(C(n)\)的非递归表达式为

\[C(n) = T(n) + 1 = nlog_2n + 1
\]

所以其渐进复杂性为\(\Theta(nlog_2n)\)

二、由于Prim算法和Kruskal 算法设计思路的不同,导致了其对不同问题实例的效率对比关系的不同。请简要论述:

1、如何将两种算法集成,以适应问题的不同实例输入;

Prim算法基于每个点, 要遍历所有的点。

Kruskal算法基于边, 要遍历许多边。

因此可以在边比较稀疏的情况下用Kruskal算法,在边较稠密的情况下使用Prim算法.

2、你如何评价这一集成的意义?

​ 通常实现下Prim是\(O(V^2)\)的时间复杂度,但可以使用优先队列将时间复杂度优化到\(O(Elog_2V)\),而Kruskal使用排序+并查集实现的复杂度为\(O(Elog_2E)\),两者最优时间复杂度差别仅为log级别的,且Prim平均情况下效果会更好。因此这一集成大概只是增加了代码复杂度,仅用Prim算法的效果可能会更好。

三、分析以下生成排列算法的正确性和时间效率:

HeapPermute(n)
//实现生成排列的Heap算法
//输入:一个正整数n和一个全局数组A[1..n]
//输出:A中元素的全排列
if n = 1
write A
else
for i ← 1 to n do
HeapPermute(n-1)
if n is odd
swap A[1] and A[n]
else swap A[i] and A[n]

1. 正确性

设 k 为正整数且 $ k \leq n\(,记\)A[1..n]\(为\)A=[a_1, a_2, \cdots, a_n]$

我们有以下结论:在执行算法\(HeapPermute(k)\)后, 输出 A 前 k 位的全排列,后\(n − k\)位不变。(特别地, 当 k = n 时, 输出的就是 A 的全排列。) 执行算法\(HeapPermute(k)\)前后, 当 k 为奇数时, A 保持不变;当n为偶数时, A 的前 k 位循环右移一位。

下面数学归纳法证明该结论:

证明

  • (1) 当\(k = 1\)时,算法\(HeapPermute(k)\)输出\([a_1, a_2, \cdots, a_n]\),与结论相符。
  • (2) 假设当$k = 2j - 1(j \(为正整数\))\(,且\)k < n \(时,执行\)HeapPermute(k)\(输出 A 前 k 位的全排列,后\)n − k\(位不变,且A保持不变。则当\)k = 2j\(时,对于\)i = 1, 2, \cdots, 2j$时,分别输出A的前\(2j-1\)位的全排列,A的后\((n - 2j + 1)\)位不变,程序向下执行到第10行,由于n为偶数,则\(swap(a_i,a_{2j})\)。之前所有操作仅改变A数组的前\(2j\)位,然后输出\(2j - 1\)位,后后\((n - 2j + 1)\)位不变。最后依次将A的第\(1, 2, \cdots, 2j\)位交换到第2m位。因此上述操作得到了A的前2j位的全排列且前2j位循环右移一位,后\(n-2j\)位不变。与结论相符。
  • (3) 假设当$k = 2j(j \(为正整数\))\(,且\)k < n\(时,,执行\)HeapPermute(k)\(输出 A 前 k 位的全排列,后\)n − k\(位不变,且 A 的前 k 位循环右移一位。类似的可得到当\)k=2j+1$时, A 保持不变。

因此结论得证,执行算法HeapPermute(n)可以输出全局数组\(A = [1..n]\)的全排列。

2. 时间效率

考虑交换操作的耗时,有递推公式如下:

\[T(n)=
\begin{cases}
1 & , & n = 1 \\
n\left[T(n - 1) + 1\right] & , & n \geq 2
\end{cases}
\]

化简得\(T(n) = n! + O(n^{n-1})\)

故\(T(n)\)的时间复杂度为\(O(n!) + O(n^{n-1})\)

四、对于求n 个实数构成的数组中最小元素的位置问题,写出你设计的具有减治思想算法的伪代码,确定其时间效率,并与该问题的蛮力算法相比较。

FindMin(n)
//实现寻找数组中最小元素的位置
//输入:一个正正整数n和一个全局数组A[1..n]
//输出:A中最小元素m及其位置a
if n == 1:
return A[1], 1
else
m, a = FindMin(n-1)
if m <= A[n]:
return m, a
else
return A[n], n

上述减治方法每次将问题的规模约减1,因此时间复杂度为\(O(n)\),与该问题的蛮力算法时间复杂度相同。

五、请给出约瑟夫斯问题的非递推公式 J(n),并证明之。其中,n 为最初总人数,J(n) 为最后幸存者的最初编号。

约瑟夫问题的非递推公式为:

\[J(n) = 1 + 2(n - 2^{\lfloor log_2n \rfloor}), \ n = 1, 2, 3, \cdots
\]

令\(m = {\lfloor log_2n \rfloor}\),\(l = n - 2^m,\)则\(J(n) = 2l+1\)

首先我们很容易知道该问题的通项公式为

\[\begin{array}{l}
J(2n) = 2J(n) - 1 & , & n 为偶数 \\
J(2n + 1) = 2J(n) + 1 & ,& n为奇数
\end{array}
\]

下用归纳法证明该通项。

证明

  1. 当\(n = 1\)时,上式显然成立。
  2. 假设\(n\)是偶数,取\(m_1、l_1\)使得\(n/2=2^{m_{1}}+l_{1}\),且\(0\leq l_{1}<2^{{m_{1}}}\)。这里\(l_{1}=l/2\)。我们有\(f(n)=2f(n/2)-1=2((2l_{1})+1)-1=2l+1\),其中第二个等式从归纳假设推出。
  3. 假设\(n\)是奇数,则我们选择\(l_{1}\)和\(m_{1}\),使得\((n-1)/2=2^{{m_{1}}}+l_{1}\),且\(0\leq l_{1}<2^{{m_{1}}}\)。注意\(l_{1}=(l-1)/2\)。我们有\(f(n)=2f((n-1)/2)+1=2((2l_{1})+1)+1=2l+1\),其中第二个等式从归纳假设推出。证毕。

综上,对所有的自然数n,原结论成立。证毕。

最新文章

  1. 谈谈JAR
  2. CSS3+jQuery实现时钟插件
  3. HTML—marquee
  4. linq 实现查询字符串拼接 : And 和 OR 两种方式
  5. 对数组进行malloc动态分配的一些总结
  6. 转:C 函数调用栈
  7. rsync-3.0.6-64
  8. c++ fstream中seekg()和seekp()的用法
  9. JavaScript高级程序设计31.pdf
  10. jquery-data的三种用法
  11. Python 的“+”和append在添加字符串时候的区别
  12. Linux下alias命令
  13. Win10玩魔兽争霸不能全屏显示的设置教程
  14. Knockout简单用法
  15. JS中的作用域以及全局变量的问题
  16. Java基础总结--流程控制
  17. ASP.NET Core Web API下事件驱动型架构的实现(四):CQRS架构中聚合与聚合根的实现
  18. requests库写接口测试框架初学习
  19. MATLAB实现Brovey图像融合
  20. cmd运行jar

热门文章

  1. 微信告警如何配置?用Cloud Alert快速实现微信告警
  2. lseek系统调用
  3. 基于FFmpeg的Dxva2硬解码及Direct3D显示(四)
  4. GDT,LDT,GDTR,LDTR (转 侵删)
  5. ip rule 策略路由
  6. 动态JavaWeb工程的架构问题
  7. C#高级编程之泛型一(泛型的引入、泛型的使用、何为泛型)
  8. 去年去阿里面试,面试官居然问我Java类和对象,我是这样回答的!
  9. 听法国设计师大卫&#183;维森特讲述他与CorelDRAW的渊源
  10. 蓝桥杯——快速排序(2018JavaB组第5题9分)