• 42.93%
  • 1000ms
  • 131072K

LATTICE is learning Digital Electronic Technology. He is talented, so he understood all those pieces of knowledge in 10^{-9}10−9 second. In the next 10^{-9}10−9 second, he built a data decoding device that decodes data encoded with his special binary coding rule to meaningful words.

His coding rule is called "prefix code", a type of code system (typically a variable-length code) distinguished by its possession of the "prefix property", which requires that there is no whole code word in the system that is a prefix (initial segment) of any other code word in the system. Note that his code is composed of only 00 and 11.

LATTICE's device only receives data that perfectly matches LATTICE's rules, in other words, people who send message to LATTICE will always obey his coding rule. However, in the process of receiving data, there are errors that cannot avoid, so LATTICE uses parity check to detect error bytes, after every 88-bit data there is 11 bit called parity bit, which should be '0' if there are odd number of '1's in the previous 88 bits and should be '1' if there are even number of '1's. If the parity bit does not meet the fact, then the whole 99 bits (including the parity bit) should be considered as invalid data and ignored. Data without parity bit is also considered as invalid data. Parity bits will be deleted after the parity check.

For example, consider the given data "101010101010101010101010", it should be divided into 33parts:"101010101","010101010" and "101010". For the first part, there are 44 '1's in the first 88 bits, and parity bit is '1', so this part passed the check. For the second part, there are 44 '1's and parity bit is '0', so this part failed the check. For the third part, it has less than 99 bits so it contains no parity bit, so this part also failed the check. The data after parity check is "10101010", which is the first 88 bits of first part.

Data passed the parity check will go into a process that decodes LATTICE's code. The process is described in the following example: consider a situation that, "010" represents 'A' and "1011" represents 'B', if the data after parity check is "01010110101011010010", it can be divided into "010"+"1011"+"010"+"1011"+"010"+"010", which means "ABABAA" . LATTICE's device is so exquisite that it can decode all visible characters in the ASCII table .

LATTICE is famous for his Talk show, some reporters have sneaked into his mansion, they stole the data LATTICE to decode in hexadecimal, the coding rule consists of NN pairs of corresponding relations from a bit string S_iSi​ to an ASCII code C_iCi​, and the message length MM, they want to peek his privacy so they come to you to write a program that decodes messages that LATTICE receives.

Input

The first line an integer T\ (T<35)T (T<35) represents the number of test cases.

Every test case starts with one line containing two integers, M\ (0<M\leq100000)M (0<M≤100000), the number of original characters, and N\ (1\leq N \leq 256)N (1≤N≤256), then NN lines, every line contains an integer C_iCi​, and a string S_i(0<|S_i|\leq 10)Si​(0<∣Si​∣≤10), means that S_iSi​ represents C_iCi​, the ASCII code to a visible character and S_iSi​ only contains '0'or '1' and there are no two numbers ii and jj that S_iSi​ is prefix of S_jSj​.

Then one line contains data that is going to be received in hexadecimal. (0<|data|<200000)(0<∣data∣<200000).

Output

For each test case, output the decoded message in a new line, the length of the decoded message should be the same with the length of original characters, which means you can stop decoding having outputted MM characters. Input guarantees that it will have no less than MM valid characters and all given ASCII codes represent visible characters.

Hint

Lattice's encoding rule for test case 22:

ASCII code character lattice's code
4949 11 00010001
5050 22 0100101001
5151 33 011011

the device takes this input in hex

 

1

14DB24722698

input in binary

 
 

1

0001 0100 1101 1011 0010 0100 0111 0010 0010 0110 1001 1000

formatted into 66 lines, each line contains 88 data bits and one parity bit

 
 

1

00010100 1

2

10110110 0

3

10010001 1

4

10010001 0

5

01101001 1

6

000

parity check of the third line and the last line failed, so ignore those two lines.parity bits should also be ignored.

 
 

1

00010100

2

10110110

3

10010001

4

01101001

arrange those bits by the rules informed

 
 

1

0001 01001 011 011 01001 0001 011 01001

output the result

 
 

1

12332132

样例输入复制

2
15 9
32 0100
33 11
100 1011
101 0110
104 1010
108 00
111 100
114 0111
119 0101
A6Fd021171c562Fde1
8 3
49 0001
50 01001
51 011
14DB24722698

样例输出复制

hello world!!!!
12332132

题目来源

ACM-ICPC 2018 沈阳赛区网络预赛

题意:

要你输出一个长度为m的字符串 给的是一定的编码 需要按照规则进行解码

给定n个字符的编码形式 保证是二进制的哈弗曼编码

每8位有一位偶校验位 如果错误这9位都不要 不够9位的也都舍去 如果正确校验位不要

输入一串十六进制的编码

思路:

模拟 分成几个步骤

用map存编码和字符的对应

首先把输入的十六进制编码转成二进制的形式

第二步 进行偶校验 得到有效的编码

第三步 找到编码对应的字符 输出


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<cstring>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x7f7f7f7f7f7f7f7f
using namespace std;
typedef long long LL; const int maxn = 200005;
int t, m, n, len, checklen;
char hexdata[maxn], bindata[maxn * 4], findata[maxn * 4];
map<string, char>mp; void init()
{
mp.clear();
memset(hexdata, 0, sizeof(hexdata));
memset(bindata, 0, sizeof(bindata));
memset(findata, 0, sizeof(findata));
len = 0;
checklen = 0;
} void hextobin()
{
for (int i = 0; i < len; i++) {
int tmp;
if (hexdata[i] == 'A' || hexdata[i] == 'a') {
tmp = 10;
}
else if (hexdata[i] == 'B' || hexdata[i] == 'b') {
tmp = 11;
}
else if (hexdata[i] == 'C' || hexdata[i] == 'c') {
tmp = 12;
}
else if (hexdata[i] == 'D' || hexdata[i] == 'd') {
tmp = 13;
}
else if (hexdata[i] == 'E' || hexdata[i] == 'e') {
tmp = 14;
}
else if (hexdata[i] == 'F' || hexdata[i] == 'f') {
tmp = 15;
}
else {
tmp = hexdata[i] - '0';
} for (int j = 3; j >= 0; j--) {
bindata[i * 4 + j] = (tmp & 1) + '0';
tmp >>= 1; }
//cout<<bindata<<endl;
} //printf("%s\n", bindata);
} void check()
{
int cnt = 0, tmplen = 0;
checklen = 0;
char tmp[10];
for (int i = 0; i < len * 4; i++) {
if ((i + 1) % 9 == 0) {
if ((cnt % 2) ^ (bindata[i] - '0')) {
for (int i = 0; i < tmplen; i++) {
findata[checklen++] = tmp[i];
}
}
cnt = 0;
tmplen = 0;
memset(tmp, 0, sizeof(tmp));
}
else {
tmp[tmplen++] = bindata[i];
if (bindata[i] == '1') {
cnt++;
}
}
} //printf("%s\n", findata);
} void solve()
{
string tmp = "";
int tmpcnt = 0;
for (int i = 0; i < checklen; i++) {
tmp += findata[i];
if (mp.find(tmp) == mp.end()) {
continue;
}
else {
printf("%c", mp[tmp]);
//cout<<tmp<<endl;
tmpcnt++;
if(tmpcnt == m){
break;
}
tmp = "";
}
}
printf("\n");
} int main()
{
cin >> t;
while (t--) {
init();
scanf("%d%d", &m, &n);
for (int i = 0; i < n; i++) {
int d;
scanf("%d ", &d);
string s;
cin >> s;
mp[s] = (char)(d);
}
cin >> hexdata;
len = strlen(hexdata);
hextobin();
check();
solve();
}
return 0;
}

最新文章

  1. JavaScript 快速排序(Quicksort)
  2. JavaScript中的apply()方法和call()方法使用介绍
  3. css reset重置样式有那么重要吗?
  4. leetcode 136. Single Number ----- java
  5. MySQL的存储引擎整理
  6. 李洪强iOS开发之【Objective-C】09-空指针和野指针
  7. python 一些重要的内建异常类
  8. 跟我学android-常用控件之EditText
  9. rem布局
  10. ansible变量
  11. android ble蓝牙开发略解
  12. (大数据工程师学习路径)第四步 SQL基础课程----约束
  13. 关于margin
  14. c#中遍历各种数据集合的方法
  15. Spring Cloud Eureka 常用配置详解,建议收藏!
  16. 如何获取STM32 MCU的唯一ID
  17. Redis监控和告警
  18. Golang 容器和不同header的解析
  19. PC/FORTH 编辑程序
  20. 第三篇 功能实现(1) (Android学习笔记)

热门文章

  1. Intellij IDEA Module 的Language Level的问题
  2. JS中setInterval、setTimeout不能传递带参数的函数的解决方法
  3. Spring部署报错:Could not open ServletContext resource [/db.properties]
  4. 前台的js对象数组传到后台处理。在前台把js对象数组转化为json字符串,在后台把json字符串解析为List&lt;&gt;
  5. PHP大量数据循环时内存耗尽问题的解决方案
  6. 中文路径-接口路径url不能传输中文解决方案
  7. BUILD_BUG_ON
  8. shell脚本中,将所有的参数值否赋给一个变量或者说将所有的参数合成一个字符串,获取所有参数
  9. 浏览器Chrome对WebGL支持判断
  10. GeoServer安装说明-OpenSpirit