LG P2730 【魔板 Magic Squares】


【题目背景】

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4
8 7 6 5

【题目描述】

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A:
8 7 6 5
1 2 3 4
B:
4 1 2 3
5 8 7 6
C:
1 7 2 4
8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

【输入输出格式】

输入格式:

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式:

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

【输入输出样例】

输入:

2 6 8 4 5 7 3 1

输出:

7
BCABCCB

【分析】

众所周知,这是一道广搜题,那么本题的大体思路就明确了,剩下的就是耐心地解决一些细节问题。

  • 降维打击

魔板原本是2X4的矩阵,但一维处理起来一定比二维方便,于是便可以降维,,要注意技巧。

以样例来说,括号里面代表这个数储存的一维数组的位置

2(a1) 6(a2) 8(a3) 4(a4)
5(a5) 7(a6) 3(a7) 1(a8)

具体实现请看代码:

 for(int i=1;i<=8;i++){//基本状态
if(i<=4) sak[1].before[i]=i;
if(i>4) sak[1].before[i]=13-i;
}
for(int i=1;i<=4;i++)//双循环输入目标状态(真~~朴素~~)
scanf("%d",&after[i]);
for(int i=8;i>=5;i--)
scanf("%d",&after[i]);
  • 判重问题

8个数排列组合一定,所以只需要判定前七个数就一定能知道最后一个数,这样就不会超出内存限制啦。然后用标记数组给这个七位数打个标记。

int pan(int a[]){//自定义pan函数用来判重
int ans=0;
for(int i=7;i>=1;i--)
ans=ans*10+a[i];
return ans;
}
  • 三种操作

无脑模拟。

  • 合理使用结构体使代码不复杂

  • 尽量保证广搜框架完整

  • 其他细节问题

AC代码

#include <bits/stdc++.h>
using namespace std;
int after[9],ans,o,jishu;//after数组为目标状态,o和jishu为累加器辅助判断一些奇怪的东西
bool fla[9000005],k;
struct sakura{//结构体
int before[9],f;char step;
}sak[100086]; int pan(int a[]){//自定义pan函数用来判重
int ans=0;
for(int i=7;i>=1;i--)
ans=ans*10+a[i];
return ans;
} bool judge(int a[]){
for(int i=1;i<=8;i++)
if(a[i]!=after[i])
return 0;
return 1;
} void print(int a){//递归输出
if(sak[a].f!=0){
o++;
print(sak[a].f);
}
if(!sak[a].f) return;
if(!k){//输出步数
printf("%d\n",o);
k=1;
}
printf("%c",sak[a].step);
jishu++;
if(!jishu%60)//隔60个换行
printf("\n");
}
void bfs(){
int h=0,t=1;sak[t].f=0;
while(h<t){
h++;
for(int i=1;i<=3;i++){//保证框架完整
int bit[9];
if(i==1){//A操作
for(int i=1;i<=4;i++){
bit[i]=sak[h].before[i+4];
bit[i+4]=sak[h].before[i];
}
}
if(i==2){//B操作
bit[1]=sak[h].before[4];bit[5]=sak[h].before[8];
bit[2]=sak[h].before[1];bit[6]=sak[h].before[5];
bit[3]=sak[h].before[2];bit[7]=sak[h].before[6];
bit[4]=sak[h].before[3];bit[8]=sak[h].before[7];
}
if(i==3){//C操作
bit[1]=sak[h].before[1];
bit[2]=sak[h].before[6];
bit[3]=sak[h].before[2];
bit[4]=sak[h].before[4];
bit[5]=sak[h].before[5];
bit[8]=sak[h].before[8];
bit[7]=sak[h].before[3];
bit[6]=sak[h].before[7];
}
if(!fla[pan(bit)]){
t++;
if(i==1) sak[t].step='A';
if(i==2) sak[t].step='B';
if(i==3) sak[t].step='C';
fla[pan(bit)]=1;//标记
sak[t].f=h;//记录爸爸
for(int i=1;i<=8;i++)
sak[t].before[i]=bit[i];
if(ans==pan(bit)){
print(t);
exit(0);//万恶之源结束
}
}
}
}
}
int main(){
for(int i=1;i<=8;i++){//降维打击
if(i<=4) sak[1].before[i]=i;
if(i>4) sak[1].before[i]=13-i;
}
fla[pan(sak[1].before)]=1;
for(int i=1;i<=4;i++)
scanf("%d",&after[i]);
for(int i=8;i>=5;i--)
scanf("%d",&after[i]);
ans=pan(after);
if(ans==pan(sak[1].before)){//特判(貌似并不需要)
printf("0\n");
return 0;
}
bfs();//万恶之源开始
return 0;
}

最新文章

  1. HDU 1729 Stone Game【SG函数】
  2. 05-IP核应用之计数器——小梅哥FPGA设计思想与验证方法视频教程配套文档
  3. Spring整合JAX-WS
  4. 《深入PHP与jQuery开发》读书笔记——Chapter3
  5. 夺命雷公狗ThinkPHP项目之----企业网站7之栏目的修改(主要用模型来验证字段)
  6. UVa 1629 Cake slicing (记忆化搜索)
  7. s3c2440之cache
  8. Spring AOP--基于XML文件的配置
  9. Linux启动提示“unexpected inconsistency;RUN fsck MANUALLY”
  10. JAX-WS(JWS)发布WebService
  11. [转] JAVA的Random类
  12. Hibernate的dynamic-insert和dynamic-update的使用
  13. python爬虫从入门到放弃前奏之学习方法
  14. 解决pgpool启动报错 ifup[/sbin/ip] doesn&#39;t have setuid bit
  15. java基础编程题练习(二)
  16. HDFS(二) 底层通信原理——RPC 及 动态代理
  17. numpy元素级数组函数
  18. C++中的const关键字学习笔记
  19. JS输入框邮箱自动提示(带有demo和源码)
  20. HDU 2509 基础Anti-SG NIM

热门文章

  1. Sql Server2008R2与IDEA的连接
  2. JavaSE 帮助文档下载
  3. Access restriction: The type &#39;JPEGCodec&#39; is not API
  4. 在接口的实现类里使用@Override注解报错
  5. PostgreSQL-2-用户权限管理
  6. celery (分布式系统)
  7. 微信支付——基于laravel框架的php实现
  8. centos 6.x下pxe+tftp+http+kickstart无人值守安装操作系统
  9. 求N之下的所有素数
  10. SSAS中处理时经常出现的几种错误