MPI Maelstrom

BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with a hierarchical communication subsystem. Valentine McKee's research advisor, Jack Swigert, has asked her to benchmark the new system. 
``Since the Apollo is a distributed shared memory machine, memory access and communication times are not uniform,'' Valentine told Swigert. ``Communication is fast between processors that share the same memory subsystem, but it is slower between processors that are not on the same subsystem. Communication between the Apollo and machines in our lab is slower yet.''

``How is Apollo's port of the Message Passing Interface (MPI) working out?'' Swigert asked.

``Not so well,'' Valentine replied. ``To do a broadcast of a message from one processor to all the other n-1 processors, they just do a sequence of n-1 sends. That really serializes things and kills the performance.''

``Is there anything you can do to fix that?''

``Yes,'' smiled Valentine. ``There is. Once the first processor has sent the message to another, those two can then send messages to two other hosts at the same time. Then there will be four hosts that can send, and so on.''

``Ah, so you can do the broadcast as a binary tree!''

``Not really a binary tree -- there are some particular features of our network that we should exploit. The interface cards we have allow each processor to simultaneously send messages to any number of the other processors connected to it. However, the messages don't necessarily arrive at the destinations at the same time -- there is a communication cost involved. In general, we need to take into account the communication costs for each link in our network topologies and plan accordingly to minimize the total time required to do a broadcast.''

Input

The input will describe the topology of a network connecting n processors. The first line of the input will be n, the number of processors, such that 1 <= n <= 100.

The rest of the input defines an adjacency matrix, A. The adjacency matrix is square and of size n x n. Each of its entries will be either an integer or the character x. The value of A(i,j) indicates the expense of sending a message directly from node i to node j. A value of x for A(i,j) indicates that a message cannot be sent directly from node i to node j.

Note that for a node to send a message to itself does not require network communication, so A(i,i) = 0 for 1 <= i <= n. Also, you may assume that the network is undirected (messages can go in either direction with equal overhead), so that A(i,j) = A(j,i). Thus only the entries on the (strictly) lower triangular portion of A will be supplied.

The input to your program will be the lower triangular section of A. That is, the second line of input will contain one entry, A(2,1). The next line will contain two entries, A(3,1) and A(3,2), and so on.

Output

Your program should output the minimum communication time required to broadcast a message from the first processor to all the other processors.

Sample Input

5
50
30 5
100 20 50
10 x x 10

Sample Output

35

题意:有n台机器,两两之间的数据传输速度是一样的。现在给出一张下三角形,表示机器两两之间的传输时间,x表示两机器间无法传输数据,求一号机器传输数据到其他机器的最小时间。

思路:先求一一号机器为起点到其他各点的最短路,然后取其中最大值,就是答案

#include<stdio.h>
#include<string.h>
#include<limits.h>
#include<vector>
#include<queue>
using namespace std; struct Node{
int v,w;
friend bool operator<(Node a,Node b)
{
return a.w>b.w;
}
}node; vector<Node> a[];
int dis[];
int n; void dij(int k)
{
int v1,v2,i;
priority_queue<Node> q;
dis[k]=;
node.w=;
node.v=k;
q.push(node);
while(q.size()){
v1=q.top().v;
q.pop();
for(i=;i<a[v1].size();i++){
v2=a[v1][i].v;
if(dis[v2]>dis[v1]+a[v1][i].w){
dis[v2]=dis[v1]+a[v1][i].w;
node.w=dis[v2];
node.v=v2;
q.push(node);
}
}
}
} int main()
{
int t,x,y,z,i,j;
char s[];
scanf("%d",&n);
for(i=;i<=n;i++){
a[i].clear();
dis[i]=INT_MAX;
}
for(i=;i<=n;i++){
for(j=;j<=i-;j++){
scanf(" %s",s); //空格等价getchar()
if(s[]!='x'){
sscanf(s,"%d",&x); //字符串转数字,若含多个数字可sscanf(s,"%d %d",&x,&y);
node.w=x;
node.v=i;
a[j].push_back(node);
node.v=j;
a[i].push_back(node);
}
}
}
dij();
int max=;
for(i=;i<=n;i++){
if(dis[i]>max) max=dis[i];
}
printf("%d\n",max);
return ;
}

最新文章

  1. 转:C++项目中的extern &quot;C&quot; {}
  2. [DNS-BIND]网络初始化
  3. CentOS 6.5安装Apache
  4. phpnow修改默认站点根目录的方法
  5. PHP安装所最到的问题-解决方案
  6. mysql学习之-密码管理(默认密码,修改密码,解决忘记密码)
  7. 手机端禁止iPhone字体放大
  8. Mysql操作个人收集
  9. 【4】学习JS 数据结构与算法笔记
  10. 3.Perl 多线程:Threads(exit thread_only)
  11. dev机上数据库中批量生成table
  12. JVM GC(整理)
  13. 从mysql数据库取一条记录里的某个字段的值
  14. 72【leetcode】经典算法- Lowest Common Ancestor of a Binary Search Tree(lct of bst)
  15. React官方文档笔记之快速入门
  16. 支持不同Android设备,包括:不同尺寸屏幕、不同屏幕密度、不同系统设置
  17. Dubbo与Nginx区别
  18. ha环境下重新格式化hdfs报错
  19. Http/Https抓包工具Charles最新版破解教程(Windows|Mac)
  20. OpenCV 中轮廓包裹的几个函数boundingRect、minAreaRect、minEnclosingCircle用法

热门文章

  1. java常用的基础容器
  2. ios之编码规范具体说明
  3. 获取系统 SID
  4. Data Structure Binary Tree: Check for Children Sum Property in a Binary Tree
  5. spring boot集成多数据源过程以及错误
  6. Linux学习之路(二)文件处理命令之上
  7. less的安装使用和入门实践
  8. bzoj 3685
  9. Speaking 1
  10. fscanf和fgets用法