简介

排序算法是我们编程中遇到的最多的算法。目前主流的算法有8种。

平均时间复杂度从高到低依次是:

冒泡排序(o(n2)),选择排序(o(n2)),插入排序(o(n2)),堆排序(o(nlogn)),

归并排序(o(nlogn)),快速排序(o(nlogn)), 希尔排序(o(n1.25)),基数排序(o(n))

这些平均时间复杂度是参照维基百科排序算法罗列的。

是计算的理论平均值,并不意味着你的代码实现能达到这样的程度。

例如希尔排序,时间复杂度是由选择的步长决定的。基数排序时间复杂度最小,

但我实现的基数排序的速度并不是最快的,后面的结果测试图可以看到。

本文代码实现使用的数据源类型为IList<int>,这样可以兼容int[]和List<int>(虽然int[]有ToList(),

List<int>有ToArray(),哈哈!)。

选择排序

选择排序是我觉得最简单暴力的排序方式了。

以前刚接触排序算法的时候,感觉算法太多搞不清,唯独记得选择排序的做法及实现。

原理:找出参与排序的数组最大值,放到末尾(或找到最小值放到开头) 维基入口

实现如下:

public static void SelectSort(IList<int> data)
{
for (int i = ; i < data.Count - ; i++)
{
int min = i;
int temp = data[i];
for (int j = i + ; j < data.Count; j++)
{
if (data[j] < temp)
{
min = j;
temp = data[j];
}
}
if (min != i)
Swap(data, min, i);
}
}

过程解析:将剩余数组的最小数交换到开头。

冒泡排序

冒泡排序是笔试面试经常考的内容,虽然它是这些算法里排序速度最慢的(汗),后面有测试为证。

原理:从头开始,每一个元素和它的下一个元素比较,如果它大,就将它与比较的元素交换,否则不动。

这意味着,大的元素总是在向后慢慢移动直到遇到比它更大的元素。所以每一轮交换完成都能将最大值

冒到最后。  维基入口

实现如下:

public static void BubbleSort(IList<int> data)
{
for (int i = data.Count - ; i > ; i--)
{
for (int j = ; j < i; j++)
{
if (data[j] > data[j + ])
Swap(data, j, j + );
}
}
}

过程解析:中需要注意的是j<i,每轮冒完泡必然会将最大值排到数组末尾,所以需要排序的数应该是在减少的。

很多网上版本每轮冒完泡后依然还是将所有的数进行第二轮冒泡即j<data.Count-1,这样会增加比较次数。

通过标识提升冒泡排序

在维基上看到,可以通过添加标识来分辨剩余的数是否已经有序来减少比较次数。感觉很有意思,可以试试。

实现如下:

public static void BubbleSortImprovedWithFlag(IList<int> data)
{
bool flag;
for (int i = data.Count - ; i > ; i--)
{
flag = true;
for (int j = ; j < i; j++)
{
if (data[j] > data[j + ])
{
Swap(data, j, j + );
flag = false;
}
}
if (flag) break;
}
}

过程解析:发现某轮冒泡没有任何数进行交换(即已经有序),就跳出排序。

我起初也以为这个方法是应该有不错效果的,可是实际测试结果并不如想的那样。和未优化耗费时间一样(对于随机数列)。

由果推因,那么应该是冒泡排序对于随机数列,当剩余数列有序的时候,也没几个数要排列了!?

不过如果已经是有序数列或者部分有序的话,这个冒泡方法将会提升很大速度。

鸡尾酒排序(来回排序)

对冒泡排序进行更大的优化

冒泡排序只是单向冒泡,而鸡尾酒来回反复双向冒泡。

原理:自左向右将大数冒到末尾,然后将剩余数列再自右向左将小数冒到开头,如此循环往复。维基入口

实现如下:

public static void BubbleCocktailSort(IList<int> data)
{
bool flag;
int m = , n = ;
for (int i = data.Count - ; i > ; i--)
{
flag = true;
if (i % == )
{
for (int j = n; j < data.Count - - m; j++)
{
if (data[j] > data[j + ])
{
Swap(data, j, j + );
flag = false;
}
}
if (flag) break;
m++;
}
else
{
for (int k = data.Count - - m; k > n; k--)
{
if (data[k] < data[k - ])
{
Swap(data, k, k - );
flag = false;
}
}
if (flag) break;
n++;
}
}
}

过程解析:分析第i轮冒泡,i是偶数则将剩余数列最大值向右冒泡至末尾,是奇数则将剩余数列最小值

向左冒泡至开头。对于剩余数列,n为始,data.Count-1-m为末。

来回冒泡比单向冒泡:对于随机数列,更容易得到有序的剩余数列。因此这里使用标识将会提升的更加明显。

插入排序

插入排序是一种对于有序数列高效的排序。非常聪明的排序。只是对于随机数列,效率一般,交换的频率高。

原理:通过构建有序数列,将未排序的数从后向前比较,找到合适位置并插入。维基入口

第一个数当作有序数列。

实现如下:

public static void InsertSort(IList<int> data)
{
int temp;
for (int i = ; i < data.Count; i++)
{
temp = data[i];
for (int j = i - ; j >= ; j--)
{
if (data[j] > temp)
{
data[j + ] = data[j];
if (j == )
{
data[] = temp;
break;
}
}
else
{
data[j + ] = temp;
break;
}
}
}
}

过程解析:将要排序的数(索引为i)存储起来,向前查找合适位置j+1,将i-1到j+1的元素依次向后

移动一位,空出j+1,然后将之前存储的值放在这个位置。

这个方法写的不如维基上的简洁清晰,由于合适位置是j+1所以多出了对j==0的判断,但实际效率影响无差别。

建议比照维基和我写的排序,自行选择。

二分查找法优化插入排序

插入排序主要工作是在有序的数列中对要排序的数查找合适的位置,而查找里面经典的二分查找法正可以适用。

原理:通过二分查找法的方式找到一个位置索引。当要排序的数插入这个位置时,大于前一个数,小于后一个数。

实现如下:

public static void InsertSortImprovedWithBinarySearch(IList<int> data)
{
int temp;
int tempIndex;
for (int i = ; i < data.Count; i++)
{
temp = data[i];
tempIndex = BinarySearchForInsertSort(data, , i, i);
for (int j = i - ; j >= tempIndex; j--)
{
data[j + ] = data[j];
}
data[tempIndex] = temp;
}
} public static int BinarySearchForInsertSort(IList<int> data, int low, int high, int key)
{
if (low >= data.Count - )
return data.Count - ;
if (high <= )
return ;
int mid = (low + high) / ;
if (mid == key) return mid;
if (data[key] > data[mid])
{
if (data[key] < data[mid + ])
return mid + ;
return BinarySearchForInsertSort(data, mid + , high, key);
}
else // data[key] <= data[mid]
{
if (mid - < ) return ;
if (data[key] > data[mid - ])
return mid;
return BinarySearchForInsertSort(data, low, mid - , key);
}
}

过程解析:需要注意的是二分查找方法实现中high-low==1的时候mid==low,所以需要33行

mid-1<0即mid==0的判断,否则下行会索引越界。

快速排序

快速排序是一种有效比较较多的高效排序。它包含了“分而治之”以及“哨兵”的思想。

原理:从数列中挑选一个数作为“哨兵”,使比它小的放在它的左侧,比它大的放在它的右侧。将要排序是数列递归地分割到

最小数列,每次都让分割出的数列符合“哨兵”的规则,自然就将数列变得有序。 维基入口

实现如下:

public static void QuickSortStrict(IList<int> data)
{
QuickSortStrict(data, , data.Count - );
} public static void QuickSortStrict(IList<int> data, int low, int high)
{
if (low >= high) return;
int temp = data[low];
int i = low + , j = high;
while (true)
{
while (data[j] > temp) j--;
while (data[i] < temp && i < j) i++;
if (i >= j) break;
Swap(data, i, j);
i++; j--;
}
if (j != low)
Swap(data, low, j);
QuickSortStrict(data, j + , high);
QuickSortStrict(data, low, j - );
}

过程解析:取的哨兵是数列的第一个值,然后从第二个和末尾同时查找,左侧要显示的是小于哨兵的值,

所以要找到不小于的i,右侧要显示的是大于哨兵的值,所以要找到不大于的j。将找到的i和j的数交换,

这样可以减少交换次数。i>=j时,数列全部查找了一遍,而不符合条件j必然是在小的那一边,而哨兵

是第一个数,位置本应是小于自己的数。所以将哨兵与j交换,使符合“哨兵”的规则。

这个版本的缺点在于如果是有序数列排序的话,递归次数会很可怕的。

另一个版本

这是维基上的一个C#版本,我觉得很有意思。这个版本并没有严格符合“哨兵”的规则。但却将“分而治之”

以及“哨兵”思想融入其中,代码简洁。

实现如下:

public static void QuickSortRelax(IList<int> data)
{
QuickSortRelax(data, , data.Count - );
} public static void QuickSortRelax(IList<int> data, int low, int high)
{
if (low >= high) return;
int temp = data[(low + high) / ];
int i = low - , j = high + ;
while (true)
{
while (data[++i] < temp) ;
while (data[--j] > temp) ;
if (i >= j) break;
Swap(data, i, j);
}
QuickSortRelax(data, j + , high);
QuickSortRelax(data, low, i - );
}

过程解析:取的哨兵是数列中间的数。将数列分成两波,左侧小于等于哨兵,右侧大于等于哨兵。

也就是说,哨兵不一定处于两波数的中间。虽然哨兵不在中间,但不妨碍“哨兵”的思想的实现。所以

这个实现也可以达到快速排序的效果。但却造成了每次递归完成,要排序的数列数总和没有减少(除非i==j)。

针对这个版本的缺点,我进行了优化

实现如下:

public static void QuickSortRelaxImproved(IList<int> data)
{
QuickSortRelaxImproved(data, , data.Count - );
} public static void QuickSortRelaxImproved(IList<int> data, int low, int high)
{
if (low >= high) return;
int temp = data[(low + high) / ];
int i = low - , j = high + ;
int index = (low + high) / ;
while (true)
{
while (data[++i] < temp) ;
while (data[--j] > temp) ;
if (i >= j) break;
Swap(data, i, j);
if (i == index) index = j;
else if (j == index) index = i;
}
if (j == i)
{
QuickSortRelaxImproved(data, j + , high);
QuickSortRelaxImproved(data, low, i - );
}
else //i-j==1
{
if (index >= i)
{
if (index != i)
Swap(data, index, i);
QuickSortRelaxImproved(data, i + , high);
QuickSortRelaxImproved(data, low, i - );
}
else //index < i
{
if (index != j)
Swap(data, index, j);
QuickSortRelaxImproved(data, j + , high);
QuickSortRelaxImproved(data, low, j - );
}
}
}
public static void QuickSortRelaxImproved(IList<int> data)
{
QuickSortRelaxImproved(data, , data.Count - );
} public static void QuickSortRelaxImproved(IList<int> data, int low, int high)
{
if (low >= high) return;
int temp = data[(low + high) / ];
int i = low - , j = high + ;
int index = (low + high) / ;
while (true)
{
while (data[++i] < temp) ;
while (data[--j] > temp) ;
if (i >= j) break;
Swap(data, i, j);
if (i == index) index = j;
else if (j == index) index = i;
}
if (j == i)
{
QuickSortRelaxImproved(data, j + , high);
QuickSortRelaxImproved(data, low, i - );
}
else //i-j==1
{
if (index >= i)
{
if (index != i)
Swap(data, index, i);
QuickSortRelaxImproved(data, i + , high);
QuickSortRelaxImproved(data, low, i - );
}
else //index < i
{
if (index != j)
Swap(data, index, j);
QuickSortRelaxImproved(data, j + , high);
QuickSortRelaxImproved(data, low, j - );
}
}
}

过程解析:定义了一个变量Index,来跟踪哨兵的位置。发现哨兵最后在小于自己的那堆,

那就与j交换,否则与i交换。达到每次递归都能减少要排序的数列数总和的目的。

以上动图由“图斗罗”提供

最新文章

  1. Asp.Net MVC中Action跳转小结
  2. Unity已经学会的
  3. 海外支付:遍布全球的Paypal
  4. Linux基本命令(9)定位、查找文件的命令
  5. Java [Leetcode 122]Best Time to Buy and Sell Stock II
  6. 12096 - The SetStack Computer UVA
  7. 辛星Spring4.x教程开放下载了
  8. [PHP] find ascii code in string
  9. 180China丨the Agency for Brand Engagement and Experience
  10. .bat脚本将windows server 2008设置成ntp时间同步服务器
  11. [洛谷P2234][HNOI2002] 营业额统计 - Treap
  12. Kali安装使用文泉驿字体
  13. Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理
  14. 我的第一个python web开发框架(28)——定制ORM(四)
  15. io模型---非阻塞模型
  16. ACM-ICPC 2018 沈阳赛区网络预赛 K题
  17. JedisClusterMaxRedirectionsException: Too many Cluster redirections
  18. [福大2018高级软工教学]团队Beta阶段成绩汇总
  19. AngularJS 的常用特性(四)
  20. 31 - gogs安装-git基础

热门文章

  1. php -- 魔术方法 之 调用方法:__call()、__callStatic()
  2. linux -- Ubuntu修改静态IP地址重启后无法上网的解决
  3. 【HDU】3622 Bomb Game(2-SAT)
  4. MATLAB中TXT数据文件读取并写入元胞数组的方法与步骤
  5. Myeclipse创建Maven项目
  6. Struts 2再曝远程代码执行漏洞S2-037
  7. java基础----&gt;string字面量的使用
  8. JZOJ.5307【NOIP2017模拟8.18】偷窃
  9. win10系统下把Oracle卸载干净
  10. 通过TZ来设置嵌入式ARM+Linux的时区