原始连接:http://rvelthuis.blogspot.tw/2018/01/strings-on-other-platforms-than-32-bit.html

Strings too slow outside WIN32?

 

In a recent debate I had it was said that strings in the Win64 runtime are too slow to be useful. That is, in my opinion, a gross exaggeration. It is true that the Win32 runtime library (RTL) has benefited a lot from the work of the FastCode project, usually with routines in extremely clever assembler. For all other platforms, often the routines are in plain Object Pascal, so no assembler is being used. Also, far fewer routines have been replaced by clever implementations.

One very obvious example of this is the Pos function, which searches if a certain string (I call that the Needle) can be found in a larger one (the Haystack). The Win32 implementation is in highly optimized assembler, written by Aleksandr Sharahov from the FastCode project, and licensed by CodeGear. The Win64 implementation is in plain Pascal (PUREPASCAL). But the implementation for UnicodeString is not the same, or even similar, to the implementation for AnsiString!

The implementation for UnicodeString is slower than the same routine for Win32. On my system a search in Win64 takes approx. 1.8 × the time it needs in Win32. On Win32, Pos for AnsiString is about as fast (or sometimes even slightly faster than) Pos for UnicodeString. But on Win64, Pos for AnsiString takes 2 × the time Pos for UnicodeString needs!

If you look at the sources in System.pas, you'll see that the Unicode version is slightly better optimized (searching for the first Char in the Needle first, and only checking the rest if a match was found).

For fun, I took the code for the UnicodeString implementation and converted it to work for AnsiString. It was slightly faster than System.Pos for UnicodeString, instead of 2 times as slow. I wonder why, in System.pas, the AnsiString implementation does not simply use the same code as that for UnicodeString, like I did. If I were a suspicious person, I would think it was done on purpose, to deprecate AnsiString by making it less usable.

But even that can be improved upon. I wrote three implementations of my own routine, one for AnsiString, one for UnicodeString and one for TBytes (many people have complained that TBytes lacks something like Pos and that was the reason they maintained the incredibly bad habit of using strings to store binary data — <shudder> — I wanted to take away that silly argument).

Code

Here is the code for my RVPosExA function (for what it's worth: these days, there is no difference between PosEx and Pos anymore: both have the exact same functionality and signature):

function RVPosExA(const Needle, Haystack: AnsiString;
Offset: Integer = 1): Integer;
type
PUInt32 = ^UInt32;
PUInt16 = ^UInt16;
{$IFNDEF CPU32BITS}
var
LNeedleTip: UInt32;
PNeedle: PAnsiChar;
PHaystack, PEnd: PAnsiChar;
LLenNeedle: Integer;
LCmpMemOffset: Integer;
{$ENDIF}
begin
{$IFDEF CPU32BITS}
// FastCode (asm) implementation.
Result := System.Pos(Needle, Haystack, Offset);
{$ELSE}
if Offset - 1 + Length(Needle) > Length(Haystack) then
Exit(0);
Result := 0;
PHaystack := PAnsiChar(Haystack) + Offset - 1;
PEnd := PHaystack + Length(Haystack) - Length(Needle) + 1;
case Length(Needle) of
0: Exit(0);
1:
begin
LNeedleTip := PByte(Needle)^;
while PHaystack < PEnd do
if
PByte(PHaystack)^ = LNeedleTip then
Exit(PHaystack - PAnsiChar(Haystack) + 1)
else
Inc(PHaystack);
Exit(0);
end;
2:
begin
LNeedleTip := PUInt16(Needle)^;
while PHaystack < PEnd do
if
PUInt16(Haystack)^ = LNeedleTip then
Exit(PHayStack - PAnsiChar(Haystack) + 1)
else
Inc(PHaystack);
Exit(0);
end;
3:
begin
LNeedleTip := PUInt32(Needle)^; // if Needle is length 3, then top byte
// is the #0 terminator

while PHaystack < PEnd do
if ((PUInt32(Haystack)^ xor LNeedleTip) and $FFFFFF) = 0 then
Exit(PHaystack - PAnsiChar(Haystack) + 1)
else
Inc(PHaystack);
Exit(0);
end;
4:
begin
LNeedleTip := PUInt32(Needle)^;
while PHaystack < PEnd do
if PUInt32(Haystack)^ = LNeedleTip then
Exit(PHaystack - PAnsiChar(Haystack) + 1)
else
Inc(PHaystack);
Exit(0);
end;
else
begin

LCmpMemOffset := SizeOf(UInt32) div SizeOf(AnsiChar);
PNeedle := PAnsiChar(Needle) + LCmpMemOffset;
LLenNeedle := Length(Needle) - LCmpMemOffset;
LNeedleTip := PUInt32(Needle)^;
while PHaystack < PEnd do
if (PUInt32(PHaystack)^ = LNeedleTip) and
CompareMem(PHaystack + LCmpMemOffset, PNeedle, LLenNeedle) then
Exit(PHaystack - PAnsiChar(Haystack) + 1)
else
Inc(PHaystack);
end;
end;
{$ENDIF}
end;

As you can see, under Win32, it simply jumps to System.Pos, as that is the fastest anyway. But on all other platforms, it searches the Haystack 4-byte-wise (if the Needle is larger than 4 elements), and if it found something, then it searches the rest using CompareMem.

Timing

Here is a slightly reformatted output of a test program (I put the WIN32 and the WIN64 columns beside each other, to save space):

Different versions of Pos(Needle, Haystack: <sometype>; Offset: Integer): Integer
where <sometype> is UnicodeString, AnsiString or TBytes Testing with Haystack lengths of 50, 200, 3000, 4000 and 300000
and Needle lengths of 1, 3, 8 and 20
5 * 4 * 2000 = 40000 loops WIN64 WIN32 UnicodeString UnicodeString
------------- -------------
System.Pos: 2428 ms System.Pos: 1051 ms
StrUtils.PosEx: 2258 ms StrUtils.PosEx: 1070 ms
RVPosExU: 1071 ms RVPosExU: 1050 ms AnsiString AnsiString
---------- ----------
System.Pos: 4956 ms System.Pos: 1046 ms
AnsiStrings.PosEx: 4959 ms AnsiStrings.PosEx: 1051 ms
OrgPosA: 5129 ms OrgPosA: 5712 ms
PosUModForA: 1958 ms PosUModForA: 3744 ms
RVPosExA: 1322 ms RVPosExA: 1086 ms TBytes TBytes
------ ------
RVPosEXB: 998 ms RVPosEXB: 2754 ms Haystack: random string of 500000000 ASCII characters or bytes
Needle: last 10 characters of Haystack = 'WRDURJVDFA' WIN64 WIN32 UnicodeString UnicodeString
------------- -------------
System.Pos: 847 ms System.Pos: 421 ms
Strutils.PosEx: 827 ms Strutils.PosEx: 414 ms
RVPosExU: 421 ms RVPosExU: 438 ms AnsiString AnsiString
---------- ----------
System.Pos: 1735 ms System.Pos: 428 ms
AnsiStrings.PosEx: 1831 ms AnsiStrings.PosEx: 428 ms
OrgPosA: 1749 ms OrgPosA: 2687 ms
PosUModForA: 708 ms PosUModForA: 1525 ms
RVPosExA: 368 ms RVPosExA: 423 ms
RvPosExA(,,Offset): 200 ms RvPosExA(,,Offset): 220 ms TBytes TBytes
------ ------
RVPosExB(TBytes): 385 ms RVPosExB(TBytes): 1095 ms

The routines RVPosExA, RVPosExU and RVPosExB are my implementations for AnsiString, UnicodeString and TBytes respectively. OrgPosA is the original code for Pos for AnsiString, while PosUModForA is the original PUREPASCAL code for Pos for UnicodeString, modified for AnsiString.

As you can see, the PosUModForA routine is almost twice as fast as the rather braindead OrgPosA, and in WIN32, the RVPosEx<A/U/B> implementations are faster than the others.

I didn't check, but it is well possible that one of the plain Pascal versions of the FastCode project is faster. But for me, this implementation is a start and proof, that with a few simple optimizations string routines could be made faster. Perhaps, one day, Embarcadero will adopt more of the plain Pascal code from the FastCode project.

The code for the routines and the program that produces the output above can be downloaded from my website.

最新文章

  1. chrome防止自动填充密码
  2. 文档分享-Activiti 5.16 用户手册
  3. Android 在Canvas中实现画笔效果(一)--钢笔
  4. 在ASP.NET 5项目中使用和调试外部源代码包
  5. Hive drop table batched
  6. [置顶] stax解析xml文档的6种方式
  7. Share_memory
  8. CSS3 transition 动画过度属性
  9. frame间跳转及相关问题
  10. Selinux安全机制
  11. python_如何修改装饰器中参数?
  12. Microsoft dynamic sdk中join应该注意的问题.
  13. BZOJ_3872_[Poi2014]Ant colony_dfs
  14. H2 Database Engine
  15. 重识TP5中模型
  16. Linux上统计文件夹下文件个数以及目录个数
  17. Python高级编程和异步IO并发编程
  18. 获取文件属性“详细信息” - StringFileInfo
  19. 伪类 :after 清除浮动的原理和方法
  20. phonegap3.5插件开发小demo

热门文章

  1. 比较perl+python
  2. Cisco &amp; H3C 交换机 DHCP 中继
  3. Android 单元测试四大组件Activity,Service,Content Provider , Broadcast Receiver
  4. 牛客练习赛15A-吉姆的运算式(Python正则表达式瞎搞)
  5. PAT L2-014 列车调度(最长上升nlogn)
  6. 489. Robot Room Cleaner扫地机器人
  7. how2j网站前端项目——天猫前端(第一次)学习笔记1
  8. DataInputStream FileInputStream 区别
  9. stark组件开发之自动生成URL
  10. UI移动设备屏幕知识