之前浅析过自旋锁(自旋锁浅析),我们知道它的实现原理就是CAS算法。CAS(Compare and Swap)即比较并交换,作为著名的无锁算法,它也是乐观锁的实现方式之一。JDK并发包里也有许多代码中有CAS的身影闪烁其中,鉴于CAS算法在并发领域的重要性和普适性,还是再结合AtomicInteger这个原子类来浅析一下吧。浅析之前,先借用之前自旋锁测试代码直接看AtomicInteger的自增测试结果,可以拿它跟自旋锁做个比较:

    @Test
public void testAtomicInteger()
{
// 10个线程使用AtomicInteger自增
AtomicInteger ai = new AtomicInteger();
for (int i = 0; i < 10; i++)
{
new Thread(new Runnable()
{
@Override
public void run()
{
// 自增1万次
for (int j = 0; j < 10000; j++)
{
count = ai.incrementAndGet();
} // 一个线程执行完了就减1,10个线程执行完了就变成0,执行主线程
latch.countDown();
}
}).start();
} // 主线程等待
try
{
latch.await();
}
catch (InterruptedException e)
{
e.printStackTrace();
} TestCase.assertEquals(count, 100000);
}

  运行结果:

count值:100000, 耗时:10毫秒.

  是不是比自旋锁要简单?必须的,因为AtomicInteger本身已经实现了CAS算法,人家天然就用于并发自增的。之前也说到过,CAS的原理很简单,它包含三个值:当前内存值(V)、预期原来的值(A)以及期待更新的值(B)。如果内存位置V的值与预期原值A相匹配,那么处理器会自动将该位置值更新为新值B,返回true。否则处理器不做任何操作,返回false。举上面的例子,我们有10个线程分别去做自增操作,很明显count是共享变量,它将被这10个线程追杀加1。假如线程1将count追加到100时,正准备更新到101这一刻,线程2插一脚抢先一步把count追加到101,那么线程1该怎么办呢?它将获取最新的count值再去自增。具体怎么实现的,我们接下来看。为了直观点,我们可以换种方式实现上面的例子:

package com.wulinfeng.test.testpilling;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger; public class AtomicIntegerTest { // 共享变量
private static int count; // 10个线程就先初始化10
private static CountDownLatch latch = new CountDownLatch(10); public static void main(String[] args) {
// 10个线程使用AtomicInteger自增
AtomicInteger ai = new AtomicInteger();
for (int i = 0; i < 10; i++) {
final int threadNum = i;
new Thread(new Runnable() {
@Override
public void run() {
// 自增1万次
for (int j = 0; j < 10000; j++) {
count = ai.incrementAndGet();
System.out.println("线程" + threadNum + ": " + count);
} // 一个线程执行完了就减1,10个线程执行完了就变成0,执行主线程
latch.countDown();
}
}).start();
} // 主线程等待
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}

  截取运行结果后面几行:

线程1: 99993
线程1: 99994
线程1: 99995
线程1: 99996
线程1: 99997
线程1: 99998
线程1: 99999
线程1: 100000

  这后面的日志打印的都是线程1在追加,把控制台日志往上拉就可以看到其他线程也一直在追加的。那么这10个线程如何在CAS的咒法护身下没有互相冲突的呢?看AtomicInteger的源码便知:

package java.util.concurrent.atomic;
import java.util.function.IntUnaryOperator;
import java.util.function.IntBinaryOperator;
import sun.misc.Unsafe; /**
* An {@code int} value that may be updated atomically. See the
* {@link java.util.concurrent.atomic} package specification for
* description of the properties of atomic variables. An
* {@code AtomicInteger} is used in applications such as atomically
* incremented counters, and cannot be used as a replacement for an
* {@link java.lang.Integer}. However, this class does extend
* {@code Number} to allow uniform access by tools and utilities that
* deal with numerically-based classes.
*
* @since 1.5
* @author Doug Lea
*/
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L; // setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset; static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
} private volatile int value; /**
* Creates a new AtomicInteger with the given initial value.
*
* @param initialValue the initial value
*/
public AtomicInteger(int initialValue) {
value = initialValue;
} /**
* Creates a new AtomicInteger with initial value {@code 0}.
*/
public AtomicInteger() {
} /**
* Gets the current value.
*
* @return the current value
*/
public final int get() {
return value;
} /**
* Sets to the given value.
*
* @param newValue the new value
*/
public final void set(int newValue) {
value = newValue;
} /**
* Eventually sets to the given value.
*
* @param newValue the new value
* @since 1.6
*/
public final void lazySet(int newValue) {
unsafe.putOrderedInt(this, valueOffset, newValue);
} /**
* Atomically sets to the given value and returns the old value.
*
* @param newValue the new value
* @return the previous value
*/
public final int getAndSet(int newValue) {
return unsafe.getAndSetInt(this, valueOffset, newValue);
} /**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
} /**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* <p><a href="package-summary.html#weakCompareAndSet">May fail
* spuriously and does not provide ordering guarantees</a>, so is
* only rarely an appropriate alternative to {@code compareAndSet}.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful
*/
public final boolean weakCompareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
} /**
* Atomically increments by one the current value.
*
* @return the previous value
*/
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
} /**
* Atomically decrements by one the current value.
*
* @return the previous value
*/
public final int getAndDecrement() {
return unsafe.getAndAddInt(this, valueOffset, -1);
} /**
* Atomically adds the given value to the current value.
*
* @param delta the value to add
* @return the previous value
*/
public final int getAndAdd(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta);
} /**
* Atomically increments by one the current value.
*
* @return the updated value
*/
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
} /**
* Atomically decrements by one the current value.
*
* @return the updated value
*/
public final int decrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
} /**
* Atomically adds the given value to the current value.
*
* @param delta the value to add
* @return the updated value
*/
public final int addAndGet(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
} /**
* Atomically updates the current value with the results of
* applying the given function, returning the previous value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the previous value
* @since 1.8
*/
public final int getAndUpdate(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return prev;
} /**
* Atomically updates the current value with the results of
* applying the given function, returning the updated value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the updated value
* @since 1.8
*/
public final int updateAndGet(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return next;
} /**
* Atomically updates the current value with the results of
* applying the given function to the current and given values,
* returning the previous value. The function should be
* side-effect-free, since it may be re-applied when attempted
* updates fail due to contention among threads. The function
* is applied with the current value as its first argument,
* and the given update as the second argument.
*
* @param x the update value
* @param accumulatorFunction a side-effect-free function of two arguments
* @return the previous value
* @since 1.8
*/
public final int getAndAccumulate(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return prev;
} /**
* Atomically updates the current value with the results of
* applying the given function to the current and given values,
* returning the updated value. The function should be
* side-effect-free, since it may be re-applied when attempted
* updates fail due to contention among threads. The function
* is applied with the current value as its first argument,
* and the given update as the second argument.
*
* @param x the update value
* @param accumulatorFunction a side-effect-free function of two arguments
* @return the updated value
* @since 1.8
*/
public final int accumulateAndGet(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return next;
} /**
* Returns the String representation of the current value.
* @return the String representation of the current value
*/
public String toString() {
return Integer.toString(get());
} /**
* Returns the value of this {@code AtomicInteger} as an {@code int}.
*/
public int intValue() {
return get();
} /**
* Returns the value of this {@code AtomicInteger} as a {@code long}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public long longValue() {
return (long)get();
} /**
* Returns the value of this {@code AtomicInteger} as a {@code float}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public float floatValue() {
return (float)get();
} /**
* Returns the value of this {@code AtomicInteger} as a {@code double}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public double doubleValue() {
return (double)get();
} }

  标黄了3个成员变量和两个方法。方法比较简单,一个是返回自增前的值,一个是返回自增后的值。

  第一个成员变量是unsafe,这个必不可少,没了它CAS就是浮云。CAS算法用到了Unsafe对象的compareAndSwapInt方法,而它是一个本地方法,所以实现源码到此为止,没法再跟进去了。其实CAS算法的精华也就在于此,所以很遗憾。但至少我们知道Unsafe总共有3个CAS方法:

    public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);

    public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

    public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);

  第二个成员变量是valueOffset,它是共享变量value在AtomicInteger对象上的内存偏移量。它作为compareAndSwapInt的第二个参数,用于修改共享变量value的值。

  最后就是value了,上面已经介绍了,它就是例子中的count,是共享变量,也就是多线程并发中被追杀的共享资源。它使用volatile修饰,解决了可见性和有序性问题,再由unsafe的CAS保证了原子性,3大问题都解决了,多线程并发问题也就解决了。

  回过头再看那标黄的两个方法,实现都是unsafe的getAndAddInt,点进去瞧瞧,发现它不是本地方法:

    public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5;
}

  代码看起来是不是有点眼熟?没错,还是自旋锁的套路,只不过这里用到的是Unsafe的CAS算法,而我们的自旋锁用到的是多套了一层马甲的AtmoicXXX的CAS算法,所以说到底,我们用的还是Unsafe的CAS。通过循环,先获取当前值var5(怎么获取当前值的?getIntVolatile就不用看了,还是本地方法),再计算更新值var5+var4,然后通过compareAndSwapInt方法设置value变量。如果compareAndSwapInt方法返回失败,表示value变量的值被别的线程更改了,所以需要循环获取value变量的最新值,再次通过compareAndSwapInt方法设置value变量,直至设置成功,跳出循环,返回更新前的值。

  从上面看到,CAS底层实现依赖于Unsafe包,我们只要明白CAS的原理即可:预期值与当前值一致,那么执行更新,否则死循环尝试更新,直到成功。

  

最新文章

  1. python支持mysql
  2. WordPress目录文件结构详细说明
  3. IOS 视频缩略图的生成
  4. 承接Unity3D外包公司 — 技术分享
  5. DevExpress.XtraGrid.GridControl 实现自定义tooltip
  6. [.net&#160;面向对象程序设计进阶] (9) 序列化(Serialization) (一) 二进制流序列化
  7. 帮助文档的制作javadoc
  8. [转]jQuery插件实现模拟alert和confirm
  9. JavaSPI机制学习笔记
  10. 『信息收集』GoogleHacking快速定位目标网站
  11. scrapy_随机ip代理池
  12. Servlet--ServletInputStream类,ServletOutputStream类
  13. SpringBoot-MongoDB 索引冲突分析及解决
  14. FineUIPro v5.1.0 发布了!
  15. JavaScript中unicode编码与String互转(三种方法)
  16. JVM 内部原理(三)— 基本概念之类文件格式
  17. WGCNA | weighted correlation network analysis
  18. 使用patroni 构建高可用的pg 数据库
  19. Oracle Grid Infrastructure Installation Guide for Linux 以debug模式安装并记录日志
  20. InteliJ Idea pom.xml不自动提示的解决

热门文章

  1. visual studio 使用技巧——vs技巧
  2. cmake下cmake_c_flags,add_definitions
  3. P3197 [HNOI2008]越狱[组合数学]
  4. 19 Jquery 属性
  5. python----装饰器(几种常见方式的使用与理解)
  6. redis 事务 &amp; 锁
  7. 一次vaccum导致的事故
  8. CSS display详解
  9. c++两种字符串赋值方式 并介绍 C语言下遍历目录文件的方式
  10. idea项目打包和在linux的部署