LinkedList作为一种常用的List,是除了ArrayList之外最有用的List。其同样实现了List接口,但是除此之外它同样实现了Deque接口,而Deque是一个双端队列接口,其继承自Queue,所以LinkedList同样可以用来模拟队列,栈以及双端队列。

一.基本用法

因为LinkedList是基于链表实现的,所以注定其插入和删除操作速度要快于ArrayList,但是由于其是链表结构,所以其随机访问查找检索速度慢于基于数组的ArrayList。

这里先主要说一下LinkedList的基本用法,以及模拟队列,模拟栈,模拟双端队列的常用方法。

1.LinkedList,List用法

List<String> myList=new LinkedList<String>();
(1)//增加元素
String s="myString"
myList.add(s);//这里等同于在链表尾端增加元素addLast(e)
myList.add(1,s);//在指定位置插入元素 (2)//获取指定位置的元素
String getString=myList.get(10)//获取链表第11处元素,从头计算 (3)//删除元素
myList.remove(2)//删除链表第3个元素 (4)//clear清空链表
myList.clear() (5)isEmpty(),//判断list是否为空

2.LinkedList模拟队列

Queue<String> myQueue=new LinkedList<String>();
(1)//添加元素到到队尾
myQueue.offer(myString);
myQueue.add(myString); (2)检索但不删除队首元素
String head=myQueue.peek();//若为空,返回null
String head=myQueue.element();//若队列为空,抛出NoSuchElementException (3)取出并且删除队首元素 String head=myQueue.poll(); //若为空,返回null
String head=myQueue.remove();//若队列为空,抛出NoSuchElementException //综上,LinkedList通过在链表尾插入元素,链表首取出元素,模拟了先进先出FIFO的队列,但是
//这里的队列是单向的

3.LinkedList模拟栈Stack操作

Deque<String> stack=new LinkedList<String>();
//(1)进栈操作
stack.push(myString); //(2)出栈操作,删除并且取出
stack.pop();
//(3)若是检索不删除则还用peek
stack.peek();
//LinkedList通过在队首插入元素,队首取出元素,模拟stack的先进后出操作

4.LinkedList模拟双端队列Deque操作

Deque<String> deque=new LinkedList<String>();
//(1)队首添加元素
deque.offerFirst(myString);
deque.addFirst(myString);
//(2)队尾添加元素
deque.offerLast(myString);
deque.addLast(myString); //(3)检索但不删除队首元素
String first=deque.peekFirst();
first=deque.getFirst();
//(4)检索但不删除队尾元素
String last=deque.peekLast();
last=deque.getLast(); //(5)取出并删除队首元素
deque.pollFirst();
deque.removeFirst();
//(6)取出并删除队尾元素
deque.pollLast();
deque.removeLast(); //这样LinkedList通过操作链表队首队尾就实现了双端队列

5.LinkedList迭代遍历

//(1)for each 循环
List<String> list=new ArrayList<String>();
for(String s:list){
////
} //(2)iterator迭代器
Iterator<String> it=list.iterator();
while(it.hasNext()){
it.next();
} //(3)同时List还提供了ListIterator接口,拥有反向正向迭代 ListIterator<String> lit=list.listIterator();
while(lit.hasNext()){
it.next();
}//正向迭代 while(it.hasPrevious()){
it.previous();
}//反向迭代 //值得注意的是,以前可能忽视了,listIterator迭代器同时提供了增删改的功能
//add(),在指定位置插入一个元素,当前迭代的前面插入
//set(E,e),修改当前迭代为指定元素
//remove();删除上一次迭代

二.JDK源码分析

这里的JDK是基于JDK1.8的源码。

1.定义,LinkedList类定义

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
// 继承了AbstractSequentialList抽象类,提供了实现List接口的基本实现
//Deque接口, A linear collection that supports element insertion and removal at both ends.
//The name <i>deque</i> is short for "double ended queue" and is usually pronounced "deck" public interface Deque<E> extends Queue<E> //所以这里就可以知道为什么LinkedList可以模拟队列,双端队列,以及Stack栈了

2.重要属性

transient int size = 0;//记录List大小
//接下来分别是两个Node引用,分别指向链表头和链表尾
transient Node<E> first;
transient Node<E> last; //接下就是链表中节点的定义,可以看到JDK1.8把节点都统一为Node了
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev; Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
//及其简单的定义,双向链表,向前链接,向后向后链接,元素

3.构造器

//(1)无参构造器
public LinkedList() {
}
//(2)带有集合的构造器
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
//调用addAll将现有集合内所有元素放到LinkedList中
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
//将整个集合c中的元素加入链表中
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index); Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false; Node<E> pred, succ;
//插入到结尾
if (index == size) {
succ = null;
pred = last;
} else {//插入到中间
//这里succ则为原来在index位置的节点
succ = node(index);
pred = succ.prev;
} for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
//创建新的Node节点,其中newNode的前向节点为pred,后向节点没有定义
Node<E> newNode = new Node<>(pred, e, null);
//pred==null,则此节点为首节点
if (pred == null)
first = newNode;
else
//当节点不是首节点时,定义前向节点的后向节点为当前节点
pred.next = newNode;
pred = newNode;
} if (succ == null) {
last = pred;
} else {
//将原来的链表加入
pred.next = succ;
succ.prev = pred;
} size += numNew;
modCount++;
return true;
}

4.常用方法源码分析

(1). add(E e)

//默认add方法,将节点放入链表尾部,同offer方法
public boolean add(E e) {
linkLast(e);
return true;
} //将节点放入链表尾部
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
//同样要判断当前节点是不是头节点
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
//将元素链接放到指定位置
public void add(int index, E element) {
//该方法主要是查看index是否合法,在范围内,否则抛出异常
checkPositionIndex(index);
//当index是末尾时,直接链接到结尾
if (index == size)
linkLast(element);
else
//否则找到index位置的原来节点,插入到其前面
linkBefore(element, node(index));
} //取出index位置的node节点
Node<E> node(int index) {
// assert isElementIndex(index);
//这里有一处非常值得注意
//size>>1表示的是向右移位1,该方法其实相当于除以2,去得一半的值
//当index<size/2时,表明index在前半部分,则正序找
//否则在后半部分,则倒序查找,节省了时间
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
} //linkBefore 方法
//这个方法是将节点插入到succ节点的前面,
//由于是在指定位置插入节点,所以要将原来的节点链接到新节点后面
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
//这里一定要注意,双向链表,一定要将pred节点的next节点定义为当前节点
pred.next = newNode;
size++;
modCount++;
}

(2).addLast(),addFirst()方法

addLast()等同于add()方法,addFirst是在链表头插入节点

//将新节点放入到链表尾部
public void addLast(E e) {
linkLast(e);
} //在链表头插入节点
public void addFirst(E e) {
linkFirst(e);
} //将新节点设置为首节点
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}

(3). getFirst(),getLast()获取头节点和尾节点

/**
* Returns the first element in this list.
*
* @return the first element in this list
* @throws NoSuchElementException if this list is empty为空会抛出异常
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
} /**
* Returns the last element in this list.
*
* @return the last element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}

(4). removeFirst(),removeLast()方法

/**
* Removes and returns the first element from this list.
*
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
} //unlinkFirst()即解开并返回头节点
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;//及时清除
f.next = null; // help GC
first = next; if (next == null)
last = null;//此时链表为空
else
next.prev = null;
size--;
modCount++;
return element;
}
/**
* Removes and returns the last element from this list.
*
* @return the last element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
} /**
* Unlinks non-null last node l.
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}

(5). contains(Object o)
    查看链表中是否存有某个元素

public boolean contains(Object o) {
return indexOf(o) != -1;
}
//indexOf()这个方法返回对象O在链表中的位置
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
//同样调用的也是equals方法判断两个值是否相等
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;//没有找到时返回-1
}

(6). get(int index)

获取指定index位置的元素

/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}

(7).set(int index,E element)

set修改指定位置的元素

//主要还是定位获取节点之后再修改
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}

(8).搜索元素所在位置indexOf(Object o),lastIndexOf(Object o)

分为正向indexOf(),即第1次插入时匹配的元素位置和反向lastIndexOf(),即最后一次插入匹配的位置

//indexOf()这个方法返回对象O在链表中的位置
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
//同样调用的也是equals方法判断两个值是否相等
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
} //反向查找
//有index的时候,必然会有lastIndexOf
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
//这里值得注意的是,index先--,因为你是从size位置开始的,所以要先--
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}

5.模拟Queue操作源码分析

再次强调一次这里queue先进先出,在队尾入队,队首出队

(1).首先是检索队首,但不出队的操作,peek(),element()

/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/最常用操作,peek(),若为空会,返回null
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
} /**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*///若为空会抛出异常
public E element() {
return getFirst();
} //再回头看一眼getFirst(),
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();//抛出异常
return f.item;
}

(2).出队操作,取出队首元素,poll(),remove()

/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
} /**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
} public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}

(3).队尾插入元素offer()

/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}

6. 模拟双端队列Deque操作源码分析

双端队列,其实就是整条链表头尾都操作,有了前面的基础,这里应该非常简单了

(1).在队首,队尾插入元素,offerFirst(),offerLast()

其实就是分别调用addFirst(E e)和addLast(E e)方法

/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
} /**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}

(2).检索队首,队尾元素,但不出队peekFirst(),peekLast()

/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
} /**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}

(3). 出队操作,取出队首,队尾元素,pollFirst(),pollLast()

/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
} /**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}

7. 模拟栈Stack操作源码分析

值得注意的是Stack操作一直是对链表头进行操作,不管是进栈push还是出栈pop方法

/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
} /**出栈操作,若栈为空会抛出异常
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}

8. 最后再看一下LinkedList的迭代器ListIterator

listIterator()方法,返回ListIterator迭代器 ,这个不带参数listIterator方法是 AbstractlList中的方法

public ListIterator<E> listIterator() {
return listIterator(0);
} //从第几个链表节点开始迭代
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
} //ListItr是其中的一个内部类,该类是一个List迭代器
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;//永远记录上一次迭代的节点
private Node<E> next;
private int nextIndex;
//这个变量非常重要,能够查看迭代过程中是否修改了List,使得迭代过程中的数据与原List中的数据一致
//Fail_fast原理,不一致时立马失败抛出异常
private int expectedModCount = modCount; //这里给出index,则可以看成是从哪个节点开始迭代
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
} //正向迭代,向后迭代
public boolean hasNext() {
return nextIndex < size;
} public E next() {
//每次迭代前都检查一下,是否修改了原List,若原List自行修改,而没有经过ListItr迭代器修改则将抛出异常
//Fail-Fast
checkForComodification();
if (!hasNext())
throw new NoSuchElementException(); lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
} //反向迭代,即向前迭代
public boolean hasPrevious() {
return nextIndex > 0;
} public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
} //返回下标
public int nextIndex() {
return nextIndex;
} public int previousIndex() {
return nextIndex - 1;
} //迭代操作时,唯一的增删改方式,值得注意的是这里的修改操作都是针对上一次的迭代
//也就是调用next()得到元素,若要对这个变量进行修改,则可以进行修改
//这种设计也十分合理,我只有得到元素我才知道我要对元素做什么 public void remove() {
//当迭代过程中要想删除元素,一定要用迭代器的remove方法
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException(); Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null; //由于上面调用unlink时,modCount++;
//所以为了下一次迭代不抛出异常,这里也要进行 expectedModCount++
expectedModCount++;
} public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
} //增也是增在next()后的元素之后
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
} public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
//// 判断expectedModCount和modCount是否一致,以确保通过ListItr的修改操作正确的反映在LinkedList中
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

三.简单总结

LinkedList是十分常用的类,而且其方法实在太多了,而且其功能还狠多,之前老是记不住,这次掰开揉碎过一遍JDK源码,发现实现其实非常简单,但是里面有很多小技巧是值得学习的。所以阅读源码应该成为我今后学习的一个好习惯,任何框架任何技术,知其所以然才能融汇贯通。

最新文章

  1. CentOS 7.2 安装配置Samba服务器
  2. BZOJ4665 : 小w的喜糖
  3. Java 中文字符串编码之GBK转UTF-8
  4. iOS开发拓展篇——如何把项目托管到GitHub
  5. linux下firefox手工安装flash插件
  6. poj1125最短路
  7. java 常用集合例子
  8. 设置lable文本内容的行间距
  9. [优先队列]HDOJ5360 Hiking
  10. iOS-开发记录-UIView属性
  11. 一日一练-CSS CSS中percentage百分值的使用
  12. 实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY)
  13. SD 笔记01
  14. (转)Centos下,Docker部署Yapi接口管理平台
  15. Ubuntu16.04 静态IP设置
  16. Chapter 7 Resources in Plug-In(1)
  17. (转)git stash使用
  18. WinForm中播放视频示例(含源码)
  19. 【重大更新】DevExpress v17.2新版亮点—Bootstrap篇(二)
  20. MySQL中drop,truncate 和delete的区别

热门文章

  1. e679. 浮雕化图像
  2. The configuration file &#39;appsettings.json&#39; was not found and is not optional
  3. 使用什么工具连接MySQL Server
  4. OpenGL模板缓冲区与模板测试
  5. 第二章 入门(MyBatis)
  6. EasyUI 扩展自定义EasyUI校验规则 验证规则
  7. win7 自带计算机(for programmer)
  8. jQuery弹出层效果
  9. c++ 类数据成员的定义、声明
  10. Java精选笔记_面向对象(多态、异常)