Hnswlib - fast approximate nearest neighbor search

Header-only C++ HNSW implementation with python bindings.

NEWS:

  • Hnswlib is now 0.5.2. Bugfixes - thanks @marekhanus for fixing the missing arguments, adding support for python 3.8, 3.9 in Travis, improving python wrapper and fixing typos/code style; @apoorv-sharma for fixing the bug int the insertion/deletion logic; @shengjun1985 for simplifying the memory reallocation logic; @TakaakiFuruse for improved description of add_items@psobotfor improving error handling; @ShuAiii for reporting the bug in the python interface

  • Hnswlib is now 0.5.0. Added support for pickling indices, support for PEP-517 and PEP-518 building, small speedups, bug and documentation fixes. Many thanks to @dbespalov@dyashuni@groodt,@uestc-lfs@vinnitu@fabiencastan@JinHai-CN@js1010!

  • Thanks to Apoorv Sharma @apoorv-sharma, hnswlib now supports true element updates (the interface remained the same, but when you the performance/memory should not degrade as you update the element embeddings).

  • Thanks to Dmitry @2ooom, hnswlib got a boost in performance for vector dimensions that are not multiple of 4

  • Thanks to Louis Abraham (@louisabraham) hnswlib can now be installed via pip!

Highlights:

  1. Lightweight, header-only, no dependencies other than C++ 11.
  2. Interfaces for C++, python and R (https://github.com/jlmelville/rcpphnsw).
  3. Has full support for incremental index construction. Has support for element deletions (currently, without actual freeing of the memory).
  4. Can work with custom user defined distances (C++).
  5. Significantly less memory footprint and faster build time compared to current nmslib's implementation.

Description of the algorithm parameters can be found in ALGO_PARAMS.md.

Python bindings

Supported distances:

Distance parameter Equation
Squared L2 'l2' d = sum((Ai-Bi)^2)
Inner product 'ip' d = 1.0 - sum(Ai*Bi)
Cosine similarity 'cosine' d = 1.0 - sum(Ai*Bi) / sqrt(sum(Ai*Ai) * sum(Bi*Bi))

Note that inner product is not an actual metric. An element can be closer to some other element than to itself. That allows some speedup if you remove all elements that are not the closest to themselves from the index.

For other spaces use the nmslib library https://github.com/nmslib/nmslib.

Short API description

  • hnswlib.Index(space, dim) creates a non-initialized index an HNSW in space space with integer dimension dim.

hnswlib.Index methods:

  • init_index(max_elements, M = 16, ef_construction = 200, random_seed = 100) initializes the index from with no elements.

    • max_elements defines the maximum number of elements that can be stored in the structure(can be increased/shrunk).
    • ef_construction defines a construction time/accuracy trade-off (see ALGO_PARAMS.md).
    • M defines tha maximum number of outgoing connections in the graph (ALGO_PARAMS.md).
  • add_items(data, ids, num_threads = -1) - inserts the data(numpy array of vectors, shape:N*dim) into the structure.

    • num_threads sets the number of cpu threads to use (-1 means use default).
    • ids are optional N-size numpy array of integer labels for all elements in data.
      • If index already has the elements with the same labels, their features will be updated. Note that update procedure is slower than insertion of a new element, but more memory- and query-efficient.
    • Thread-safe with other add_items calls, but not with knn_query.
  • mark_deleted(label) - marks the element as deleted, so it will be omitted from search results.

  • resize_index(new_size) - changes the maximum capacity of the index. Not thread safe with add_items and knn_query.

  • set_ef(ef) - sets the query time accuracy/speed trade-off, defined by the ef parameter ( ALGO_PARAMS.md). Note that the parameter is currently not saved along with the index, so you need to set it manually after loading.

  • knn_query(data, k = 1, num_threads = -1) make a batch query for k closest elements for each element of the

    • data (shape:N*dim). Returns a numpy array of (shape:N*k).
    • num_threads sets the number of cpu threads to use (-1 means use default).
    • Thread-safe with other knn_query calls, but not with add_items.
  • load_index(path_to_index, max_elements = 0) loads the index from persistence to the uninitialized index.

    • max_elements(optional) resets the maximum number of elements in the structure.
  • save_index(path_to_index) saves the index from persistence.

  • set_num_threads(num_threads) set the default number of cpu threads used during data insertion/querying.

  • get_items(ids) - returns a numpy array (shape:N*dim) of vectors that have integer identifiers specified in ids numpy vector (shape:N). Note that for cosine similarity it currently returns normalized vectors.

  • get_ids_list() - returns a list of all elements' ids.

  • get_max_elements() - returns the current capacity of the index

  • get_current_count() - returns the current number of element stored in the index

Read-only properties of hnswlib.Index class:

  • space - name of the space (can be one of "l2", "ip", or "cosine").

  • dim - dimensionality of the space.

  • M - parameter that defines the maximum number of outgoing connections in the graph.

  • ef_construction - parameter that controls speed/accuracy trade-off during the index construction.

  • max_elements - current capacity of the index. Equivalent to p.get_max_elements().

  • element_count - number of items in the index. Equivalent to p.get_current_count().

Properties of hnswlib.Index that support reading and writin

  • ef - parameter controlling query time/accuracy trade-off.

  • num_threads - default number of threads to use in add_items or knn_query. Note that calling p.set_num_threads(3) is equivalent to p.num_threads=3.

Python bindings examples

import hnswlib
import numpy as np
import pickle dim = 128
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
ids = np.arange(num_elements) # Declaring index
p = hnswlib.Index(space = 'l2', dim = dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand
p.init_index(max_elements = num_elements, ef_construction = 200, M = 16) # Element insertion (can be called several times):
p.add_items(data, ids) # Controlling the recall by setting ef:
p.set_ef(50) # ef should always be > k # Query dataset, k - number of closest elements (returns 2 numpy arrays)
labels, distances = p.knn_query(data, k = 1) # Index objects support pickling
# WARNING: serialization via pickle.dumps(p) or p.__getstate__() is NOT thread-safe with p.add_items method!
# Note: ef parameter is included in serialization; random number generator is initialized with random_seed on Index load
p_copy = pickle.loads(pickle.dumps(p)) # creates a copy of index p using pickle round-trip ### Index parameters are exposed as class properties:
print(f"Parameters passed to constructor: space={p_copy.space}, dim={p_copy.dim}")
print(f"Index construction: M={p_copy.M}, ef_construction={p_copy.ef_construction}")
print(f"Index size is {p_copy.element_count} and index capacity is {p_copy.max_elements}")
print(f"Search speed/quality trade-off parameter: ef={p_copy.ef}")

An example with updates after serialization/deserialization:

import hnswlib
import numpy as np dim = 16
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim))) # We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:] # Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip # Initializing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction p.init_index(max_elements=num_elements//2, ef_construction=100, M=16) # Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10) # Set number of threads used during batch search/construction
# By default using all available cores
p.set_num_threads(4) print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n") # Serializing and deleting the index:
index_path='first_half.bin'
print("Saving index to '%s'" % index_path)
p.save_index("first_half.bin")
del p # Re-initializing, loading the index
p = hnswlib.Index(space='l2', dim=dim) # the space can be changed - keeps the data, alters the distance function. print("\nLoading index from 'first_half.bin'\n") # Increase the total capacity (max_elements), so that it will handle the new data
p.load_index("first_half.bin", max_elements = num_elements) print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")

Bindings installation

You can install from sources:

apt-get install -y python-setuptools python-pip
git clone https://github.com/nmslib/hnswlib.git
cd hnswlib
pip install .

or you can install via pip: pip install hnswlib

Other implementations

Contributing to the repository

Contributions are highly welcome!

Please make pull requests against the develop branch.

200M SIFT test reproduction

To download and extract the bigann dataset (from root directory):

python3 download_bigann.py

To compile:

mkdir build
cd build
cmake ..
make all

To run the test on 200M SIFT subset:

./main

The size of the BigANN subset (in millions) is controlled by the variable subset_size_millions hardcoded in sift_1b.cpp.

最新文章

  1. html快速入门(基础教程+资源推荐)
  2. C语言指针变量作为函数参数
  3. CentOS 6上安装xfce桌面环境
  4. AtomicInteger源码分析——基于CAS的乐观锁实现
  5. remoting技术
  6. JTAG的SWD接线方式
  7. 在fmri研究中,cca的应用历史
  8. Session_set_save_handler 之 文本模式实现
  9. Jplayer(转)
  10. [Redux] React Todo List Example (Toggling a Todo)
  11. java_web总结(一)
  12. BotVS趋势交易策略-MACD
  13. 如何快速成长?我的java之路!
  14. 下拉框多级联动辅助js,优化您的下拉框
  15. elasticsearch判断索引是否存在
  16. Django的rest_framework的视图之基于ModelViewSet视图源码解析
  17. js实现文字超出部分用省略号代替实例代码
  18. poj_3352 连通图的桥
  19. 《OpenCL异构并行编程实战》补充笔记散点,第一至四章
  20. tsung的配置使用

热门文章

  1. loj3076
  2. .Babylon格式的模型转化为glb模型,并使用ThreeJS加载显示
  3. vue框架2
  4. java正则解析ip
  5. python win32 microsoft excel 类range的copyPictrue方法无效
  6. element-UI 如果获取表格当前行
  7. java之路总结
  8. QT控件使用--QPlainTextEdit
  9. springboot上传图片
  10. Eureka服务剔除下线