一。GIL

  什么是GIL?

  GIL是一个全局排他锁,简单来说就是为了防止多线程并行操作的锁。这里有官方解释:

In CPython, the global interpreter lock, or GIL, is a mutex
that prevents multiple native threads from executing Python
bytecodes at once. This lock is necessary mainly because
CPython’s memory management is not thread-safe. (However,
since the GIL exists, other features have grown to depend on
the guarantees that it enforces.)
在cpython中,全局解释器锁(gil)是一个互斥体,它可以防止多个本
机线程同时执行python字节码。这个锁是必要的,主要是因为cpython
的内存管理不是线程安全的。(然而,由于gil存在,其他特性也越来越
依赖于它所执行的保证。)

  GIL的存在是因为CPython解释器的内存管理不是线程安全的

  在一个进程中有多个线程,多个线程之间如果可以并行会是什么样子?以垃圾回收机制为例。

  垃圾回收机制也是一种线程,在解释器中,每创建一个程序就会加载一次解释器。
  如果python中没有GIL的话就可能出现一种情况,当线程a在运行时创建了一个名称a,而立刻运行了垃圾回收机制,垃圾回收机制就立刻把那个名称a给回收了等到再次运行线程a时,会出现名称空间丢失的情况,
  这是不被允许的。所以GIL就是为了使得所有线程都是串行运行,但是这样会大大降低运行的效率。而且没有了多核优势,但是保证了数据的安全性。

  事实上,GIL并不是python的特点,他是所有解释性语言的通病,在python的编译器中有很多有GIL的编译器。

  那么,是不是意味着有了GIL就可以不用其他锁了呢。答案显然是否定的,

from threading import Thread
import time n = 100
def task():
global n
tmp = n
# time.sleep(1)
n = tmp -1 t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t) for t in t_list:
t.join() print(n)

   在线程中有io操作,使得其他线程有了抢锁的时间,导致最后的结果不是0,所有还是要根据不同数据添加不同的锁。

二。多线程的作用。

  从当前来看,多进程可以支持并行操作,在当下多核处理器为主流的情况下是不是就不需要多线程了呢。

  这要从各个进程/线程的计算密集度与io密集度情况分析。

  计算密集型:

from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i if __name__ == '__main__':
l=[]
print(os.cpu_count()) # 本机为6核
start=time.time()
for i in range(6):
# p=Process(target=work) #耗时 4.732933044433594
p=Thread(target=work) #耗时 22.83087730407715
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))

  io密集型

def work():
time.sleep(2) if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为6核
start=time.time()
for i in range(40):
p=Process(target=work) #耗时9.001083612442017s多,大部分时间耗费在创建进程上
# p=Thread(target=work) #耗时2.051966667175293s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))

  从这就可以看出如果是计算密集型的就是使用进程比较有优势,因为可以多核计算,然而就io密集型的就是要线程居多,毕竟cpu利用率高还需要创建大量的进程,比较耗时间。

二。死锁:

  死锁就是在并发进程中因为争夺系统资源而产生相互等待的现象。

  四个必要条件:

  1。互斥。

  2.占有并等待

  3.不可抢占

  4.循环等待

  例子:

class MyThread(Thread):
def run(self): # 创建线程自动触发run方法 run方法内调用func1 func2相当于也是自动触发
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print('%s抢到了A锁'%self.name) # self.name等价于current_thread().name
mutexB.acquire()
print('%s抢到了B锁'%self.name)
mutexB.release()
print('%s释放了B锁'%self.name)
mutexA.release()
print('%s释放了A锁'%self.name) def func2(self):
mutexB.acquire()
print('%s抢到了B锁'%self.name)
time.sleep(1)
mutexA.acquire()
print('%s抢到了A锁' % self.name)
mutexA.release()
print('%s释放了A锁' % self.name)
mutexB.release()
print('%s释放了B锁' % self.name) for i in range(10):
t = MyThread()
t.start()

  定义一个自己的线程类,其中run方法在运行是,需要经过两个锁的过程,当10个线程先后执行时,第一个获取ab锁的人在获取b锁后再获取a锁,会发现锁被其他线程给站住了,双方互相站住了对方所需要的资源,而自己这边也有对方需要的资源,这样就形成了死锁。

  不要轻易的处理死锁的问题。

  递归锁。

  在python中有递归锁的概念。递归锁是一个可以连续使用的锁,Rlock可以被第一个抢到锁的人连续的acquire和release

  每acquire一次锁身上的计数加1

  每release一次锁身上的计数减1

  只要锁的计数不为0 其他人都不能抢

mutexA = mutexB = RLock()# A B现在是同一把锁
class MyThread(Thread):
def run(self): # 创建线程自动触发run方法 run方法内调用func1 func2相当于也是自动触发
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print('%s抢到了A锁'%self.name) # self.name等价于current_thread().name
mutexB.acquire()
print('%s抢到了B锁'%self.name)
mutexB.release()
print('%s释放了B锁'%self.name)
mutexA.release()
print('%s释放了A锁'%self.name) def func2(self):
mutexB.acquire()
print('%s抢到了B锁'%self.name)
time.sleep(1)
mutexA.acquire()
print('%s抢到了A锁' % self.name)
mutexA.release()
print('%s释放了A锁' % self.name)
mutexB.release()
print('%s释放了B锁' % self.name) for i in range(10):
t = MyThread()
t.start()

三。信号量

  信号量是一个为线程或进程服务的概念,设置一个指定数量的占位,就是最多可以容纳该数的进程或线程执行,当其被占满时,就会处于等待的状态,每个进程或线程在运行时都会执行锁操作,运行结束执行释放锁操作。例子:

from threading import Semaphore,Thread
import time
import random sm = Semaphore(5) # 造了一个含有五个的坑位的公共厕所 def task(name):
sm.acquire()
print('%s占了一个坑位'%name)
time.sleep(random.randint(1,3))
sm.release() for i in range(40):
t = Thread(target=task,args=(i,))
t.start()

四。event事件

  正常情况下使用join方法可以实现主程序等待子程序的功能,但是event可以实现子进程等子进程的功能。

from threading import Event,Thread
import time # 先生成一个event对象
e = Event() def light():
print('红灯正亮着')
time.sleep(3)
e.set() # 发信号
print('绿灯亮了') def car(name):
print('%s正在等红灯'%name)
e.wait() # 等待信号
print('%s加油门飙车了'%name) t = Thread(target=light)
t.start() for i in range(10):
t = Thread(target=car,args=('伞兵%s'%i,))
t.start()

五。线程q

  同一个进程下的多个线程本来就是数据共享 为什么还要用队列

  因为队列是管道+锁 使用队列你就不需要自己手动操作锁的问题.

  锁操作的不好极容易产生死锁现象.

  queue.Queue() ,先进先出的队列

  queue.LifoQueue(),先进后出的队列(栈)

  queue.PriorityQueue(),可以设置优先级的队列,优先级数字越低,就越先被拿出

import queue

# q = queue.Queue()
# q.put('hahha')
# print(q.get()) # q = queue.LifoQueue()
# q.put(1)
# q.put(2)
# q.put(3)
# print(q.get()) q = queue.PriorityQueue()
# # 数字越小 优先级越高
q.put((10,'haha'))
q.put((100,'hehehe'))
q.put((0,'xxxx'))
q.put((-10,'yyyy'))
print(q.get())

补充

  不使用socketserver实现TCP并发。

  思路:使用多线程,讲链接conn当成参数传给线程,多线程可以使其链接多个客户端

import socket

client = socket.socket()
client.connect(('127.0.0.1',8080)) while True:
msg = input('>>>').encode('utf-8')
client.send(msg)
recv_msg = client.recv(1024)
print(recv_msg)

客户端

import socket
from threading import Thread server = socket.socket()
server.bind(('127.0.0.1',8080))
server.listen(5) def talk(conn):
while True:
try:
msg = conn.recv(1024)
return_s = msg
conn.send(return_s)
except ConnectionResetError:
print('断开链接')
break
conn.close() while True:
conn,addr = server.accept()
t = Thread(target=talk,args=(conn,))
t.start()

服务器

在cpython中,全局解释器锁(gil)是一个互斥体,它可以防止多个本机线程同时执行python字节码。这个锁是必要的,主要是因为cpython的内存管理不是线程安全的。(然而,由于gil存在,其他特性也越来越依赖于它所执行的保证。)

最新文章

  1. 配置 linux-bridge mechanism driver - 每天5分钟玩转 OpenStack(77)
  2. 零基础学WEB前端-CSS
  3. WPF入门教程系列三——Application介绍(续)
  4. Filter Effects - 使用 CSS3 滤镜处理图片
  5. EntityFramework 中支持 BulkInsert 扩展
  6. Java性能调优笔记
  7. nmon基础
  8. 安卓高手之路之 WindowManager
  9. Swift 编程风格指南(raywenderlich.com 版本号)
  10. CSS、CSS2和CSS3选择器总结(全部选择器种类及其优先级)
  11. 创建FBI树
  12. spring bean管理 笔记1
  13. ORA-01994: GRANT failed: password file missing or disabled
  14. 【BZOJ1485】有趣的数列
  15. jsp-EL表达式简介
  16. splash 安装
  17. rabbitMq 教程
  18. 听 Fabien Potencier 谈Symfony2 之 《What is Dependency Injection ?》
  19. [PHP] apache在worker模式配置fastcgi使用php-fpm
  20. android实现静默安装demo

热门文章

  1. django登录页面设计:
  2. 记录战斗记录你,详解妖尾战斗录像系统[Unity]
  3. FFmpeg 常用结构体
  4. JS解决所有浏览器连续输入英文字母不换行问题,包括火狐(转)
  5. perf性能调优
  6. Docker 下开发安装hyperf
  7. Kafka随笔
  8. jvm的组成入门
  9. 解锁云原生 AI 技能|在 Kubernetes 上构建机器学习系统
  10. CSS 控制文字两端对齐