本案中3个关键服务器

物理服务器:192.168.6.63,简称P,(Physical server)

KVM-VM:192.168.6.150,是物理服务器P上的一个KVM虚机,简称VM

NAS:外部NAS服务器,用来做ping/arp测试服务器,简称NAS

物理服务器P的配置:

#uname -a
Linux cz63 4.15.18-11-pve #1 SMP PVE 4.15.18-34 (Mon, 25 Feb 2019 14:51:06 +0100) x86_64 GNU/Linux #cat /etc/network/interfaces
auto lo
iface lo inet loopback auto enp3s0f0
iface enp3s0f0 inet manual auto enp3s0f1
iface enp3s0f1 inet manual auto ens1f0
iface ens1f0 inet manual auto ens1f1
iface ens1f1 inet manual auto bond0
iface bond0 inet manual
bond-slaves enp3s0f0 enp3s0f1
bond-miimon 100
bond-mode balance-rr auto bond1
iface bond1 inet manual
bond-slaves ens1f0 ens1f1
bond-miimon 100
bond-mode balance-rr auto vmbr0
iface vmbr0 inet static
address 192.168.6.63
netmask 255.255.255.0
gateway 192.168.6.1
bridge-ports bond0
bridge-stp off
bridge-fd 0 auto vmbr1
iface vmbr1 inet static
address 10.1.1.63
netmask 255.255.255.0
bridge-ports bond1
bridge-stp off
bridge-fd 0
#brctl show
bridge name bridge id STP enabled interfaces
vmbr0 8000.ac1f6b342094 no bond0
tap401000001i0
vmbr1 8000.74a4b500e768 no bond1

安装KVM-VM,之后VM与外部服务器的连接非常不稳定,90%情况下会出现ping不可达。这里测试了centos、ubuntu、win7都是一样的不稳定。

在VM内执行ping 192.168.6.40(NAS)

结果ping不通。

此时,在P上执行

tcpdump -leni vmbr0 arp

tcpdump -leni tap401000001i0 arp

发现情况如下:

P上
#tcpdump -leni vmbr0 arp | grep 2a:f0:5f:ae:c9:8b
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 46 P上
#tcpdump -leni tap401000001i0 arp | grep 2a:f0:5f:ae:c9:8b
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 46
2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.6.40 (ff:ff:ff:ff:ff:ff) tell 192.168.6.150, length 28 NAS上
# tcpdump -leni vmx0 arp | grep c9:8b
02:03:50.930907 2a:f0:5f:ae:c9:8b > 00:50:56:87:86:b9, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.40 tell 192.168.6.150, length 46
02:03:50.930923 00:50:56:87:86:b9 > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 42: Reply 192.168.6.40 is-at 00:50:56:87:86:b9, length 28
02:04:02.669823 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:02.670131 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:03.670770 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:03.671059 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:04.672736 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:04.672992 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:06.671878 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:06.672021 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:07.674726 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:07.674773 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:08.676733 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:08.676868 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46
02:04:10.673678 2a:f0:5f:ae:c9:8b > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 192.168.6.32 tell 192.168.6.150, length 46
02:04:10.674026 00:50:56:87:e3:6d > 2a:f0:5f:ae:c9:8b, ethertype ARP (0x0806), length 60: Reply 192.168.6.32 is-at 00:50:56:87:e3:6d, length 46

vmbr0上发现了2个request包和1个reply包

tap401000001i0上仅发现了request包,而且length不一致,未发现reply包。

NAS上一切正常

看到的现象就是VM在发送icmp之前需要先获得NAS的MAC地址,所以需要先通过ARP广播获取到NAS的MAC地址。

  • P的vmbr0异常:接收到2个request,1个reply
  • P的vmbr0异常:接收到reply未发送至tap401000001i0

    由于以上2个原因,导致VM无法收到reply,所以icmp不能进行,ping失败。

问题定位在数据链路层的ARP协议上。

在VM上执行arping -c 10 192.168.6.40

现象依据。再次证明以上2个现象。

# brctl show
bridge name bridge id STP enabled interfaces
vmbr0 8000.ac1f6b342094 no bond0
tap401000001i0
vmbr1 8000.74a4b500e768 no bond1
# brctl showstp vmbr0
vmbr0
bridge id 8000.ac1f6b342094
designated root 8000.ac1f6b342094
root port 0 path cost 0
max age 20.00 bridge max age 20.00
hello time 2.00 bridge hello time 2.00
forward delay 0.00 bridge forward delay 0.00
ageing time 300.00
hello timer 0.00 tcn timer 0.00
topology change timer 0.00 gc timer 4.18
flags bond0 (1)
port id 8001 state forwarding
designated root 8000.ac1f6b342094 path cost 4
designated bridge 8000.ac1f6b342094 message age timer 0.00
designated port 8001 forward delay timer 0.00
designated cost 0 hold timer 0.00
flags tap401000001i0 (2)
port id 8002 state forwarding
designated root 8000.ac1f6b342094 path cost 100
designated bridge 8000.ac1f6b342094 message age timer 0.00
designated port 8002 forward delay timer 0.00
designated cost 0 hold timer 0.00
flags # brctl showmacs vmbr0
port no mac addr is local? ageing timer
1 2a:f0:5f:ae:c9:8b no 1.13
1 00:50:56:87:e3:6d no 0.00
# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination Chain FORWARD (policy ACCEPT)
target prot opt source destination Chain OUTPUT (policy ACCEPT)
target prot opt source destination
# ebtables -L
Bridge table: filter Bridge chain: INPUT, entries: 0, policy: ACCEPT Bridge chain: FORWARD, entries: 0, policy: ACCEPT Bridge chain: OUTPUT, entries: 0, policy: ACCEPT
# ip rule show
0: from all lookup local
32766: from all lookup main
32767: from all lookup default
# ip route show table all
default via 192.168.6.1 dev vmbr0 onlink
10.1.1.0/24 dev vmbr1 proto kernel scope link src 10.1.1.63
192.168.6.0/24 dev vmbr0 proto kernel scope link src 192.168.6.63
broadcast 10.1.1.0 dev vmbr1 table local proto kernel scope link src 10.1.1.63
local 10.1.1.63 dev vmbr1 table local proto kernel scope host src 10.1.1.63
broadcast 10.1.1.255 dev vmbr1 table local proto kernel scope link src 10.1.1.63
broadcast 127.0.0.0 dev lo table local proto kernel scope link src 127.0.0.1
local 127.0.0.0/8 dev lo table local proto kernel scope host src 127.0.0.1
local 127.0.0.1 dev lo table local proto kernel scope host src 127.0.0.1
broadcast 127.255.255.255 dev lo table local proto kernel scope link src 127.0.0.1
broadcast 192.168.6.0 dev vmbr0 table local proto kernel scope link src 192.168.6.63
local 192.168.6.63 dev vmbr0 table local proto kernel scope host src 192.168.6.63
broadcast 192.168.6.255 dev vmbr0 table local proto kernel scope link src 192.168.6.63
# bridge vlan show
port vlan ids
bond0 1 PVID Egress Untagged vmbr0 1 PVID Egress Untagged bond1 1 PVID Egress Untagged vmbr1 1 PVID Egress Untagged tap401000001i0 1 PVID Egress Untagged

以上一切正常,未发现输出问题,思路该怎么展开?

google了一下午加一个晚上,各种不解决。

最后看到了linux关于bond的说明:

https://forum.huawei.com/enterprise/zh/thread-282727.html

再看看P的网卡,明明是mode0啊!

这时候再去交换机上一看!哈啊~!

interface GigabitEthernet0/0/5
port link-type access
port default vlan 6
#
interface GigabitEthernet0/0/6
port link-type access
port default vlan 6
#
interface GigabitEthernet0/0/7
port link-type access
port default vlan 6
#
interface GigabitEthernet0/0/8
port link-type access
port default vlan 6

感觉好像是这个问题。

然后ifdown ens1f1,问题解决。

VM与所有外部网络通讯正常,无任何故障现象。

通过阅读华为网站的文章,确定了balance-rr需要交换机做修改。

不想劳烦网管,所以自己改成mode6。

一切归于平静。

问题只是临时解决了,但是产生现象的原理还没明白。

2009年自己就详细看了windows teaming linux bond的原理及配置,苦于只是知道OS层面,不知道switch侧应该怎么对应,所以知识点一直有欠缺,2017年、2018年都曾经入坑,可惜哪里有2台物理服务器和物理交换机实践一下呀!
这次总算补齐了OS和switch的配置。

能用mode6就用mode6,再其次就是mode4。

以下给自己看的:

brctl show							#查看bridge信息
brctl showstp vmbr0 #查看vnbr0的stp信息,是否转发等
brctl showmacs vmbr0 | grep c9:8b #查看bridge的MAC地址
tcpdump -leni vmbr0 arp #debug vmbr0网卡的arp包信息
tcpdump -leni vmbr0 icmp #debug vmbr0网卡的icmp包信息
iptables -A FORWARD -i vmbr0 -o vmbr0 -j ACCEPT
iptables -L #查看iptables
ebtables -L #查看数据链路层的table信息
arping -c 10 192.168.1.1 #arp ping
ip rule show
ip route show table local
ip route show table all
bridge monitor #monitor fdb update
bridge vlan show #查看bridge的vlan信息 ping -c 1 -I veth1 192.168.3.1 #指定网卡进行ping测试 /proc/sys/net/bridge/bridge-nf-call-iptables #干嘛的
/proc/sys/net/ipv4/ip_forward #多网卡下,数据包转发 sysctl -a | grep bridge
net.bridge.bridge-nf-call-arptables中的0或者1代表什么意思?? echo 1 > /proc/sys/net/ipv4/conf/eth0/arp_ignore #什么意思??
echo 8 > /proc/sys/net/ipv4/conf/eth0/arp_announce #什么意思??

最新文章

  1. AE开发示例之GPBufferLayer
  2. BZOJ4530: [Bjoi2014]大融合
  3. springJDBC实现mysql简单分页
  4. XBox 开发者大会
  5. VBScript Sample:遍历文件夹并获取XML文件中指定内容
  6. python 中对list做减法操作
  7. Android 5.0之后屏幕截图的方法
  8. Android实现播放GIF动画的强大ImageView
  9. php之 有点复杂的 流程管理
  10. NAT集群部署solo之session server
  11. vue全选与取消全选
  12. Navicat Premium for Mac 破解版地址
  13. DRF分页组件
  14. [.NET] 一个获取随机数的新方式
  15. pycharm+PyQt5+python最新开发环境配置
  16. 51nod 1009 数字1的数量
  17. linux 使用wc命令统计文件行数、字数及大小
  18. BZOJ2427:[HAOI2010]软件安装——题解
  19. Mac /Ubuntu/Windows 下安装nodejs
  20. 在vue项目中的axios使用配置记录

热门文章

  1. 20个可用于商业用途的免费 CC0 授权的高分辨率图库
  2. js数组操作-最佳图解
  3. Pycharm 常用快捷键与设置
  4. JAVA IO流 InputStream流 Read方法
  5. initWithFrame方法的使用
  6. 软件测试_MYSQL
  7. 实验九 ZStack 广播通信实验
  8. Filter用户例子
  9. 渗透测试学习 九、 MSsql注入上
  10. PIL库的总结及运用