位置指纹法中最常用的算法是k最近邻(kNN):选取与当前RSS最邻近的k个指纹的位置估计当前位置,简单直观有效。本文介绍kNN用于定位的基本原理与具体实现(matlab、python)。

基本原理

位置指纹法可以看作是分类或回归问题(特征是RSS向量,标签是位置),监督式机器学习方法可以从数据中训练出一个从特征到标签的映射关系模型。kNN是一种很简单的监督式机器学习算法,可以用来做分类或回归。

对于在线RSS向量\(s\),分别计算它与指纹库中各个RSS向量{\(s_1, s_2, ..., s_M\)}的距离(比如欧氏距离),选取最近的\(k\)个位置指纹(一个指纹是一个RSS向量与一个位置的对应)。

  • 对于knn回归,标签是坐标x和坐标y,可以进行数值计算,使用这k个指纹的位置坐标取平均,得到作为定位结果。

  • 对于knn分类,将定位区域划分为1m$\times$1m的网格,每个网格是看作一个类别,用网格标号代替,对k个网格标号计数投票,选择票数做多的网格作为定位结果。

kNN是一种lazy式的学习方法,在上面的过程中不需要使用训练数据进行“学习”,在定位的时候直接在训练数据中搜索就可以。一些工具包中的kNN算法的训练过程中会建立一个kd树(一种数据结构),有利于在线预测时的搜索。


具体实现

Github地址,包括matlab版本和python版本

数据来源说明:http://www.cnblogs.com/rubbninja/p/6118430.html

导入数据

# 导入数据
import numpy as np
import scipy.io as scio
offline_data = scio.loadmat('offline_data_random.mat')
online_data = scio.loadmat('online_data.mat')
offline_location, offline_rss = offline_data['offline_location'], offline_data['offline_rss']
trace, rss = online_data['trace'][0:1000, :], online_data['rss'][0:1000, :]
del offline_data
del online_data
# 定位准确度
def accuracy(predictions, labels):
return np.mean(np.sqrt(np.sum((predictions - labels)**2, 1)))

knn回归

# knn回归
from sklearn import neighbors
knn_reg = neighbors.KNeighborsRegressor(40, weights='uniform', metric='euclidean')
predictions = knn_reg.fit(offline_rss, offline_location).predict(rss)
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, "m"
accuracy:  2.24421479398 m

knn分类

# knn分类,需要把坐标转换成网格标号,预测后将网格标号转换为坐标
labels = np.round(offline_location[:, 0]/100.0) * 100 + np.round(offline_location[:, 1]/100.0)
from sklearn import neighbors
knn_cls = neighbors.KNeighborsClassifier(n_neighbors=40, weights='uniform', metric='euclidean')
predict_labels = knn_cls.fit(offline_rss, labels).predict(rss)
x = np.floor(predict_labels/100.0)
y = predict_labels - x * 100
predictions = np.column_stack((x, y)) * 100
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, 'm'
accuracy:  2.73213398632 m

定位算法分析

加入数据预处理和交叉验证

# 预处理,标准化数据(其实RSS数据还算正常,不预处理应该也无所谓,特征选择什么的也都不需要)
from sklearn.preprocessing import StandardScaler
standard_scaler = StandardScaler().fit(offline_rss)
X_train = standard_scaler.transform(offline_rss)
Y_train = offline_location
X_test = standard_scaler.transform(rss)
Y_test = trace
# 交叉验证,在knn里用来选择最优的超参数k
from sklearn.model_selection import GridSearchCV
from sklearn import neighbors
parameters = {'n_neighbors':range(1, 50)}
knn_reg = neighbors.KNeighborsRegressor(weights='uniform', metric='euclidean')
clf = GridSearchCV(knn_reg, parameters)
clf.fit(offline_rss, offline_location)
scores = clf.cv_results_['mean_test_score']
k = np.argmax(scores) #选择score最大的k
# 绘制超参数k与score的关系曲线
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(range(1, scores.shape[0] + 1), scores, '-o', linewidth=2.0)
plt.xlabel("k")
plt.ylabel("score")
plt.grid(True)
plt.show()

# 使用最优的k做knn回归
knn_reg = neighbors.KNeighborsRegressor(n_neighbors=k, weights='uniform', metric='euclidean')
predictions = knn_reg.fit(offline_rss, offline_location).predict(rss)
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, "m"
accuracy:  2.22455511073 m
# 训练数据量与accuracy
k = 29
data_num = range(100, 30000, 300)
acc = []
for i in data_num:
knn_reg = neighbors.KNeighborsRegressor(n_neighbors=k, weights='uniform', metric='euclidean')
predictions = knn_reg.fit(offline_rss[:i, :], offline_location[:i, :]).predict(rss)
acc.append(accuracy(predictions, trace) / 100)
# 绘制训练数据量与accuracy的曲线
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(data_num, acc, '-o', linewidth=2.0)
plt.xlabel("data number")
plt.ylabel("accuracy (m)")
plt.grid(True)
plt.show()

作者:[rubbninja](http://www.cnblogs.com/rubbninja/)
出处:[http://www.cnblogs.com/rubbninja/](http://www.cnblogs.com/rubbninja/)
关于作者:目前主要研究领域为机器学习与无线定位技术,欢迎讨论与指正!
版权声明:本文版权归作者和博客园共有,转载请注明出处。

最新文章

  1. 安装MySql for Visual Studio的坑
  2. Elasticsearch Java 虚拟机配置详解
  3. OAuth2 Backend Web Application 验证过程
  4. 骑士游历/knight tour - visual basic 解决
  5. [分享] 封装工具ES4配置文件解释
  6. c#判断是否为合法的email地址
  7. HttpClient请求返回JSON、图片
  8. 一个关于AM335X比较全面的笔记博客
  9. IOS开发之网络编程--文件压缩和解压缩
  10. http协议要点
  11. sql脚本的格式
  12. CentOS 6.5断电后启动出现:unexpected inconsistency run fsck manully
  13. js原生封装自定义滚动条
  14. CI 中css样式或者js样式加载不进来的情况
  15. 移动并改变alpha
  16. MapReduce ---- TD-IDF
  17. C++11 左值与右值
  18. 一句话绑定父函数的作用域this
  19. mac与windows共享键盘鼠标(synergy)
  20. (golang)HTTP基本认证机制及使用gocolly登录爬取

热门文章

  1. (七)Transformation和action详解-Java&Python版Spark
  2. [No0000AE]在 Visual Studio 中调试 XAML 设计时异常
  3. mac 终端 svn 命令
  4. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
  5. Spring + SpringMVC + Druid + JPA(Hibernate impl) 给你一个稳妥的后端解决方案
  6. .NET跨平台之旅:升级至ASP.NET 5 RC1,Linux上访问SQL Server数据库
  7. 【C#】调度程序进程已挂起,但消息仍在处理中;
  8. redis配置文件详解
  9. jQuery ui autocomplete 与easyUI冲突解决办法(重命名ui的autocomplete 和menu部分)
  10. NPOI导出数据,设置格式,锁定单元格